Contents

Blackline Masters

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Practice B</td>
<td>1</td>
<td>6-6 Practice B</td>
</tr>
<tr>
<td>1-2</td>
<td>Practice B</td>
<td>2</td>
<td>7-1 Practice B</td>
</tr>
<tr>
<td>1-3</td>
<td>Practice B</td>
<td>3</td>
<td>7-2 Practice B</td>
</tr>
<tr>
<td>1-4</td>
<td>Practice B</td>
<td>4</td>
<td>7-3 Practice B</td>
</tr>
<tr>
<td>1-5</td>
<td>Practice B</td>
<td>5</td>
<td>7-4 Practice B</td>
</tr>
<tr>
<td>1-6</td>
<td>Practice B</td>
<td>6</td>
<td>7-5 Practice B</td>
</tr>
<tr>
<td>1-7</td>
<td>Practice B</td>
<td>7</td>
<td>7-6 Practice B</td>
</tr>
<tr>
<td>2-1</td>
<td>Practice B</td>
<td>8</td>
<td>8-1 Practice B</td>
</tr>
<tr>
<td>2-2</td>
<td>Practice B</td>
<td>9</td>
<td>8-2 Practice B</td>
</tr>
<tr>
<td>2-3</td>
<td>Practice B</td>
<td>10</td>
<td>8-3 Practice B</td>
</tr>
<tr>
<td>2-4</td>
<td>Practice B</td>
<td>11</td>
<td>8-4 Practice B</td>
</tr>
<tr>
<td>2-5</td>
<td>Practice B</td>
<td>12</td>
<td>8-5 Practice B</td>
</tr>
<tr>
<td>2-6</td>
<td>Practice B</td>
<td>13</td>
<td>8-6 Practice B</td>
</tr>
<tr>
<td>2-7</td>
<td>Practice B</td>
<td>14</td>
<td>9-1 Practice B</td>
</tr>
<tr>
<td>3-1</td>
<td>Practice B</td>
<td>15</td>
<td>9-2 Practice B</td>
</tr>
<tr>
<td>3-2</td>
<td>Practice B</td>
<td>16</td>
<td>9-3 Practice B</td>
</tr>
<tr>
<td>3-3</td>
<td>Practice B</td>
<td>17</td>
<td>9-4 Practice B</td>
</tr>
<tr>
<td>3-4</td>
<td>Practice B</td>
<td>18</td>
<td>9-5 Practice B</td>
</tr>
<tr>
<td>3-5</td>
<td>Practice B</td>
<td>19</td>
<td>9-6 Practice B</td>
</tr>
<tr>
<td>3-6</td>
<td>Practice B</td>
<td>20</td>
<td>10-1 Practice B</td>
</tr>
<tr>
<td>4-1</td>
<td>Practice B</td>
<td>21</td>
<td>10-2 Practice B</td>
</tr>
<tr>
<td>4-2</td>
<td>Practice B</td>
<td>22</td>
<td>10-3 Practice B</td>
</tr>
<tr>
<td>4-3</td>
<td>Practice B</td>
<td>23</td>
<td>10-4 Practice B</td>
</tr>
<tr>
<td>4-4</td>
<td>Practice B</td>
<td>24</td>
<td>10-5 Practice B</td>
</tr>
<tr>
<td>4-5</td>
<td>Practice B</td>
<td>25</td>
<td>10-6 Practice B</td>
</tr>
<tr>
<td>4-6</td>
<td>Practice B</td>
<td>26</td>
<td>10-7 Practice B</td>
</tr>
<tr>
<td>4-7</td>
<td>Practice B</td>
<td>27</td>
<td>10-8 Practice B</td>
</tr>
<tr>
<td>4-8</td>
<td>Practice B</td>
<td>28</td>
<td>11-1 Practice B</td>
</tr>
<tr>
<td>5-1</td>
<td>Practice B</td>
<td>29</td>
<td>11-2 Practice B</td>
</tr>
<tr>
<td>5-2</td>
<td>Practice B</td>
<td>30</td>
<td>11-3 Practice B</td>
</tr>
<tr>
<td>5-3</td>
<td>Practice B</td>
<td>31</td>
<td>11-4 Practice B</td>
</tr>
<tr>
<td>5-4</td>
<td>Practice B</td>
<td>32</td>
<td>11-5 Practice B</td>
</tr>
<tr>
<td>5-5</td>
<td>Practice B</td>
<td>33</td>
<td>11-6 Practice B</td>
</tr>
<tr>
<td>5-6</td>
<td>Practice B</td>
<td>34</td>
<td>11-7 Practice B</td>
</tr>
<tr>
<td>5-7</td>
<td>Practice B</td>
<td>35</td>
<td>12-1 Practice B</td>
</tr>
<tr>
<td>5-8</td>
<td>Practice B</td>
<td>36</td>
<td>12-2 Practice B</td>
</tr>
<tr>
<td>6-1</td>
<td>Practice B</td>
<td>37</td>
<td>12-3 Practice B</td>
</tr>
<tr>
<td>6-2</td>
<td>Practice B</td>
<td>38</td>
<td>12-4 Practice B</td>
</tr>
<tr>
<td>6-3</td>
<td>Practice B</td>
<td>39</td>
<td>12-5 Practice B</td>
</tr>
<tr>
<td>6-4</td>
<td>Practice B</td>
<td>40</td>
<td>12-6 Practice B</td>
</tr>
<tr>
<td>6-5</td>
<td>Practice B</td>
<td>41</td>
<td>12-7 Practice B</td>
</tr>
</tbody>
</table>
Name ____________________________ Date ______ Class ________

LESSON 1-1

Practice B

Understanding Points, Lines, and Planes

Use the figure for Exercises 1–7.

1. Name a plane. ____________________________

2. Name a segment. ____________________________

3. Name a line. ____________________________

4. Name three collinear points.

5. Name three noncollinear points.

6. Name the intersection of a line and a segment not on the line.

7. Name a pair of opposite rays.

Use the figure for Exercises 8–11.

8. Name the points that determine plane R.

9. Name the point at which line m intersects plane R.

10. Name two lines in plane R that intersect line m.

11. Name a line in plane R that does not intersect line m.

Draw your answers in the space provided.

Michelle Kwan won a bronze medal in figure skating at the 2002 Salt Lake City Winter Olympic Games.

12. Michelle skates straight ahead from point L and stops at point M. Draw her path.

13. Michelle skates straight ahead from point L and continues through point M. Name a figure that represents her path. Draw her path.

14. Michelle and her friend Alexei start back to back at point L and skate in opposite directions. Michelle skates through point M, and Alexei skates through point K. Draw their paths.
Draw your answer in the space provided.

1. Use a compass and straightedge to construct \overline{XY} congruent to \overline{UV}.

\[\overline{U} \quad \overline{V} \]

Find the coordinate of each point.

- **B**
- **E**
- **D**
- **C**

Find each length.

- **BE**
- **DB**
- **EC**

For Exercises 8–11, H is between I and J.

8. $HI = 3.9$ and $HJ = 6.2$. Find IJ. _______

9. $JI = 25$ and $IH = 13$. Find HJ. _______

10. H is the midpoint of \overline{IJ}, and $IH = 0.75$. Find HJ. _______

11. H is the midpoint of \overline{IJ}, and $IJ = 9.4$. Find IH. _______

Find the measurements.

12. K \[x + 0.5 \] L \[3x - 2 \] M \[3x + 1.5 \]

Find LM. _______

13. A pole-vaulter uses a 15-foot-long pole. She grips the pole so that the segment below her left hand is twice the length of the segment above her left hand. Her right hand grips the pole 1.5 feet above her left hand. How far up the pole is her right hand? _______

Find the coordinate of each point.

- **B**
- **E**
- **D**
- **C**

Find each length.

- **BE**
- **DB**
- **EC**

For Exercises 8–11, H is between I and J.

8. $HI = 3.9$ and $HJ = 6.2$. Find IJ. _______

9. $JI = 25$ and $IH = 13$. Find HJ. _______

10. H is the midpoint of \overline{IJ}, and $IH = 0.75$. Find HJ. _______

11. H is the midpoint of \overline{IJ}, and $IJ = 9.4$. Find IH. _______

Find the measurements.

12. K \[x + 0.5 \] L \[3x - 2 \] M \[3x + 1.5 \]

Find LM. _______

13. A pole-vaulter uses a 15-foot-long pole. She grips the pole so that the segment below her left hand is twice the length of the segment above her left hand. Her right hand grips the pole 1.5 feet above her left hand. How far up the pole is her right hand? _______
Draw your answer on the figure.

1. Use a compass and straightedge to construct angle bisector \(\overline{DG} \).

2. Name eight different angles in the figure.

Find the measure of each angle and classify each as acute, right, obtuse, or straight.

3. \(\angle YWZ \)

4. \(\angle XWZ \)

5. \(\angle YWX \)

\(T \) is in the interior of \(\angle PQR \). Find each of the following.

6. \(m\angle PQT \) if \(m\angle PQR = 25^\circ \) and \(m\angle RQT = 11^\circ \).

7. \(m\angle PQR \) if \(m\angle PQR = (10x - 7)^\circ \), \(m\angle RQT = 5x^\circ \), and \(m\angle PQT = (4x + 6)^\circ \).

8. \(m\angle PQR \) if \(\overline{QT} \) bisects \(\angle PQR \), \(m\angle RQT = (10x - 13)^\circ \), and \(m\angle PQT = (6x + 1)^\circ \).

9. Longitude is a measurement of position around the equator of Earth. Longitude is measured in degrees, minutes, and seconds. Each degree contains 60 minutes, and each minute contains 60 seconds. Minutes are indicated by the symbol ’ and seconds are indicated by the symbol ”. Williamsburg, VA, is located at 76°42’25” Roanoke, VA, is located at 79°57’30”. Find the difference of their longitudes in degrees, minutes, and seconds.

10. To convert minutes and seconds into decimal parts of a degree, divide the number of minutes by 60 and the number of seconds by 3,600. Then add the numbers together. Write the location of Roanoke, VA, as a decimal to the nearest thousandths of a degree.
1. \(\angle PQR \) and \(\angle SQR \) form a linear pair. Find the sum of their measures. _____________

2. Name the ray that \(\angle PQR \) and \(\angle SQR \) share. _______________

Use the figures for Exercises 3 and 4.

3. supplement of \(\angle Z \) _______________

4. complement of \(\angle Y \) _______________

5. An angle measures 12 degrees less than three times its supplement. Find the measure of the angle. _______________

6. An angle is its own complement. Find the measure of a supplement to this angle. _______________

7. \(\angle DEF \) and \(\angle FEG \) are complementary. \(m\angle DEF = (3x - 4)^\circ \), and \(m\angle FEG = (5x + 6)^\circ \).

 Find the measures of both angles. _______________

8. \(\angle DEF \) and \(\angle FEG \) are supplementary. \(m\angle DEF = (9x + 1)^\circ \), and \(m\angle FEG = (8x + 9)^\circ \).

 Find the measures of both angles. _______________

Use the figure for Exercises 9 and 10.

In 2004, several nickels were minted to commemorate the Louisiana Purchase and Lewis and Clark’s expedition into the American West. One nickel shows a pipe and a hatchet crossed to symbolize peace between the American government and Native American tribes.

9. Name a pair of vertical angles.

10. Name a linear pair of angles.

11. \(\angle ABC \) and \(\angle CBD \) form a linear pair and have equal measures. Tell if \(\angle ABC \) is acute, right, or obtuse. _______________

12. \(\angle KLM \) and \(\angle MLN \) are complementary. \(\overline{LM} \) bisects \(\angle KLN \). Find the measures of \(\angle KLM \) and \(\angle MLN \). _______________
Use the figures for Exercises 1–3.

1. Find the perimeter of triangle A. _______________

2. Find the area of triangle A. _______________

3. Triangle A is identical to triangle B. Find the height h of triangle B. _______________

Find the perimeter and area of each shape.

4. square with a side 2.4 m in length _______________

5. rectangle with length $(x + 3)$ and width 7 _______________

6. Although a circle does not have sides, it does have a perimeter. What is the term for the perimeter of a circle? _______________

Find the circumference and area of each circle.

7. _______________

8. _______________

9. _______________

10. The area of a square is $\frac{1}{4}$ in2. Find the perimeter. _______________

11. The area of a triangle is 152 m2, and the height is 16 m. Find the base. _______________

12. The circumference of a circle is 25π mm. Find the radius. _______________

Use the figure for Exercises 13 and 14.

Lucas has a 39-foot-long rope. He uses all the rope to outline this T-shape in his backyard. All the angles in the figure are right angles.

13. Find x. _______________

14. Find the area enclosed by the rope. _______________
Practice B

LESSON 1-6

Midpoint and Distance in the Coordinate Plane

Find the coordinates of the midpoint of each segment.

1. \(TU\) with endpoints \(T(5, -1)\) and \(U(1, -5)\)

2. \(VW\) with endpoints \(V(-2, -6)\) and \(W(x + 2, y + 3)\)

3. \(Y\) is the midpoint of \(XZ\). \(X\) has coordinates \((2, 4)\), and \(Y\) has coordinates \((-1, 1)\). Find the coordinates of \(Z\).

Use the figure for Exercises 4–7.

4. Find \(AB\).

5. Find \(BC\).

6. Find \(CA\).

7. Name a pair of congruent segments.

Find the distances.

8. Use the Distance Formula to find the distance, to the nearest tenth, between \(K(-7, -4)\) and \(L(-2, 0)\).

9. Use the Pythagorean Theorem to find the distance, to the nearest tenth, between \(F(9, 5)\) and \(G(-2, 2)\).

Use the figure for Exercises 10 and 11.

Snooker is a kind of pool or billiards played on a 6-foot-by-12-foot table. The side pockets are halfway down the rails (long sides).

10. Find the distance, to the nearest tenth of a foot, diagonally across the table from corner pocket to corner pocket.

11. Find the distance, to the nearest tenth of an inch, diagonally across the table from corner pocket to side pocket.
Use the figure for Exercises 1–3.

The figure in the plane at right shows the preimage in the transformation $ABCD \to A'B'C'D'$. Match the number of the image (below) with the name of the correct transformation.

1. rotation
2. translation
3. reflection

4. A figure has vertices at $D(-2, 1), E(-3, 3),$ and $F(0, 3)$. After a transformation, the image of the figure has vertices at $D'(-1, -2), E'(-3, -3),$ and $F'(-3, 0)$. Draw the preimage and the image. Then identify the transformation.

5. A figure has vertices at $G(0, 0), H(-1, -2), I(-1.5, 0),$ and $J(-2.5, 2)$. Find the coordinates for the image of $GHIJ$ after the translation $(x, y) \to (x - 2.5, y + 4)$.

Use the figure for Exercise 6.

6. A parking garage attendant will make the most money when the maximum number of cars fits in the parking garage. To fit one more car in, the attendant moves a car from position 1 to position 2. Write a rule for this translation.

7. A figure has vertices at $X(-1, 1), Y(-2, 3),$ and $Z(0, 4)$. Draw the image of XYZ after the translation $(x, y) \to (x - 2, y)$ and a 180° rotation around X.
LESSON 2-1 Using Inductive Reasoning to Make Conjectures

Find the next item in each pattern.

1. 100, 81, 64, 49, . . .

2. \(\bigcirc, \bigcirc, \bigcirc, . . . \)

4. west, south, east, . . .

Complete each conjecture.

5. The square of any negative number is ________________.

6. The number of segments determined by \(n \) points is ________________.

Show that each conjecture is false by finding a counterexample.

7. For any integer \(n \), \(n^3 \geq 0 \).

8. Each angle in a right triangle has a different measure.

9. For many years in the United States, each bank printed its own currency. The variety of different bills led to widespread counterfeiting. By the time of the Civil War, a significant fraction of the currency in circulation was counterfeit. If one Civil War soldier had 48 bills, 16 of which were counterfeit, and another soldier had 39 bills, 13 of which were counterfeit, make a conjecture about what fraction of bills were counterfeit at the time of the Civil War.

Make a conjecture about each pattern. Write the next two items.

10. 1, 2, 2, 4, 8, 32, . . .

11. \(\bigcirc, \bigcirc, \bigcirc, . . . \)
Identify the hypothesis and conclusion of each conditional.

1. If you can see the stars, then it is night.
 Hypothesis: You can see the stars.
 Conclusion: It is night.

2. A pencil writes well if it is sharp.
 Hypothesis: A pencil is sharp.
 Conclusion: The pencil writes well.

Write a conditional statement from each of the following.

3. Three noncollinear points determine a plane.

4. "If G is at 4, then GH is 3." Write the converse, inverse, and contrapositive of this statement. Find the truth value of each.
 Converse: If GH is 3, then G is at 4; false
 Inverse: If G is not at 4, then GH is not 3; false
 Contrapositive: If GH is not 3, then G is not at 4; true

Determine if each conditional is true. If false, give a counterexample.

5. If two points are noncollinear, then a right triangle contains one obtuse angle.

6. If a liquid is water, then it is composed of hydrogen and oxygen.

7. If a living thing is green, then it is a plant.

8. "If G is at 4, then GH is 3." Write the converse, inverse, and contrapositive of this statement. Find the truth value of each.
 Converse: If GH is 3, then G is at 4; false
 Inverse: If G is not at 4, then GH is not 3; false
 Contrapositive: If GH is not 3, then G is not at 4; true

This chart shows a small part of the Mammalia class of animals, the mammals. Write a conditional to describe the relationship between each given pair.

9. primates and mammals

10. lemurs and rodents

11. rodents and apes

12. apes and mammals
Tell whether each conclusion is a result of inductive or deductive reasoning.

1. The United States Census Bureau collects data on the earnings of American citizens. Using data for the three years from 2001 to 2003, the bureau concluded that the national average median income for a four-person family was $43,527.
 - inductive reasoning

2. A speeding ticket costs $40 plus $5 per mi/h over the speed limit. Lynne mentions to Frank that she was given a ticket for $75. Frank concludes that Lynne was driving 7 mi/h over the speed limit.
 - deductive reasoning

Determine if each conjecture is valid by the Law of Detachment.

3. Given: If \(\angle ABC = \angle CBD \), then \(\overline{BC} \) bisects \(\angle ABD \). \(\overline{BC} \) bisects \(\angle ABD \).
 Conjecture: \(m\angle ABC = m\angle CBD \).
 - invalid

4. Given: You will catch a catfish if you use stink bait. Stuart caught a catfish.
 Conjecture: Stuart used stink bait.
 - invalid

5. Given: An obtuse triangle has two acute angles. Triangle \(ABC \) is obtuse.
 Conjecture: Triangle \(ABC \) has two acute angles.
 - valid

Determine if each conjecture is valid by the Law of Syllogism.

6. Given: If the gossip said it, then it must be true. If it is true, then somebody is in big trouble.
 Conjecture: Somebody is in big trouble because the gossip said it.
 - valid

7. Given: No human is immortal. Fido the dog is not human.
 Conjecture: Fido the dog is immortal.
 - invalid

8. Given: The radio is distracting when I am studying. If it is 7:30 P.M. on a weeknight, I am studying.
 Conjecture: If it is 7:30 P.M. on a weeknight, the radio is distracting.
 - valid

Draw a conclusion from the given information.

9. Given: If two segments intersect, then they are not parallel. If two segments are not parallel, then they could be perpendicular. \(\overline{EF} \) and \(\overline{MN} \) intersect.
 - \(\overline{EF} \) and \(\overline{MN} \) could be perpendicular.

10. Given: When you are relaxed, your blood pressure is relatively low. If you are sailing, you are relaxed. Becky is sailing.
 - Becky's blood pressure is relatively low.
Write the conditional statement and converse within each biconditional.

1. The tea kettle is whistling if and only if the water is boiling.
 Conditional: ____________________________
 Converse: ____________________________

2. A biconditional is true if and only if the conditional and converse are both true.
 Conditional: ____________________________
 Converse: ____________________________

For each conditional, write the converse and a biconditional statement.

3. Conditional: If \(n \) is an odd number, then \(n - 1 \) is divisible by 2.
 Converse: ____________________________
 Biconditional: ____________________________

4. Conditional: An angle is obtuse when it measures between 90° and 180°.
 Converse: ____________________________
 Biconditional: ____________________________

Determine whether a true biconditional can be written from each conditional statement. If not, give a counterexample.

5. If the lamp is unplugged, then the bulb does not shine.
 No; sample answer: The switch could be off.

6. The date can be the 29th if and only if it is not February.
 No; possible answer: Leap years have a Feb. 29th.

Write each definition as a biconditional.

7. A cube is a three-dimensional solid with six square faces.

8. Tanya claims that the definition of doofus is "her younger brother."

LESSON 2-5 \hspace{1cm} \textbf{Algebraic Proof}

Practice B

Solve each equation. Show all your steps and write a justification for each step.

1. \(\frac{1}{5}(a + 10) = -3 \)
2. \(t + 6.5 = 3t - 1.3 \)

3. The formula for the perimeter \(P \) of a rectangle with length \(\ell \) and width \(w \) is \(P = 2(\ell + w) \). Find the length of the rectangle shown here if the perimeter is \(9 \frac{1}{2} \) feet.

Solve the equation for \(\ell \) and justify each step.

Write a justification for each step.

4. \hspace{1cm} \text{Identify the property that justifies each statement.}

5. \(m = n \), so \(n = m \).
6. \(\angle ABC \cong \angle ABC \)

7. \(KL \cong LK \)
8. \(p = q \) and \(q = -1 \), so \(p = -1 \).
Practice B

Geometric Proof

Write a justification for each step.

Given: \(AB = EF \), \(B \) is the midpoint of \(\overline{AC} \), and \(E \) is the midpoint of \(\overline{DF} \).

1. \(B \) is the midpoint of \(\overline{AC} \), and \(E \) is the midpoint of \(\overline{DF} \).

2. \(\overline{AB} \cong \overline{BC} \), and \(\overline{DE} \cong \overline{EF} \).
3. \(\overline{AB} = \overline{BC} \), and \(DE = EF \).
4. \(\overline{AB} + \overline{BC} = \overline{AC} \), and \(\overline{DE} + \overline{EF} = \overline{DF} \).
5. \(2\overline{AB} = \overline{AC} \), and \(2\overline{EF} = \overline{DF} \).
6. \(\overline{AB} = \overline{EF} \)
7. \(2\overline{AB} = 2\overline{EF} \)
8. \(\overline{AC} = \overline{DF} \)
9. \(\overline{AC} \cong \overline{DF} \)

Fill in the blanks to complete the two-column proof.

10. Given: \(\triangle HKJ \) is a straight angle.
\(\overline{KI} \) bisects \(\triangle HKJ \).

Prove: \(\triangle IKJ \) is a right angle.

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. a. (\triangle HKJ) is a straight angle.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (m\angle HKJ = 180^\circ)</td>
<td>2. b. (\triangle IKJ) is a right angle.</td>
</tr>
<tr>
<td>3. c. (\overline{KI}) bisects (\triangle HKJ)</td>
<td>3. Given</td>
</tr>
<tr>
<td>4. (\angle IKJ \equiv \angle IKH)</td>
<td>4. Def. of (\angle) bisector</td>
</tr>
<tr>
<td>5. (m\angle IKJ = m\angle IKH)</td>
<td>5. Def. of (\equiv \triangle)</td>
</tr>
<tr>
<td>6. d. (\angle IKJ) is a right angle.</td>
<td>6. (\angle) Add. Post.</td>
</tr>
<tr>
<td>7. (2m\angle IKJ = 180^\circ)</td>
<td>7. e. Subst. (Steps (\square) (\square))</td>
</tr>
<tr>
<td>8. (m\angle IKJ = 90^\circ)</td>
<td>8. Div. Prop. of (=)</td>
</tr>
<tr>
<td>9. (\angle IKJ) is a right angle.</td>
<td>9. f. (\triangle) Add. Post.</td>
</tr>
</tbody>
</table>
LESSON 2-7

Practice B

Flowchart and Paragraph Proofs

1. Use the given two-column proof to write a flowchart proof.
 Given: \(\angle 4 \cong \angle 3 \)
 Prove: \(m\angle 1 = m\angle 2 \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 1) and (\angle 4) are supplementary, (\angle 2) and (\angle 3) are supplementary.</td>
<td>1. Linear Pair Thm.</td>
</tr>
<tr>
<td>2. (\angle 4 \cong \angle 3)</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. (\angle 1 \cong \angle 2)</td>
<td>3. (\cong) Supps. Thm.</td>
</tr>
<tr>
<td>4. (m\angle 1 = m\angle 2)</td>
<td>4. Def. of (\cong) (\angle)</td>
</tr>
</tbody>
</table>

2. Use the given two-column proof to write a paragraph proof.
 Given: \(AB = CD, BC = DE \)
 Prove: \(C \) is the midpoint of \(\overline{AE} \).

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (AB = CD, BC = DE)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (AB + BC = CD + DE)</td>
<td>2. Add. Prop. of =</td>
</tr>
<tr>
<td>4. (AC = CE)</td>
<td>4. Subst.</td>
</tr>
<tr>
<td>5. (AC \cong CE)</td>
<td>5. Def. of (\cong) segs.</td>
</tr>
<tr>
<td>6. (C) is the midpoint of (\overline{AE}).</td>
<td>6. Def. of mdpt.</td>
</tr>
</tbody>
</table>
LESSON 3-1

Practice B

Lines and Angles

For Exercises 1–4, identify each of the following in the figure.

1. a pair of parallel segments ____________________________
2. a pair of skew segments ____________________________
3. a pair of perpendicular segments ____________________________
4. a pair of parallel planes ____________________________

In Exercises 5–10, give one example of each from the figure.

5. a transversal ____________________________
6. parallel lines ____________________________
7. corresponding angles ____________________________
8. alternate interior angles ____________________________
9. alternate exterior angles ____________________________
10. same-side interior angles ____________________________

Use the figure for Exercises 11–14. The figure shows a utility pole with an electrical line and a telephone line. The angled wire is a tension wire. For each angle pair given, identify the transversal and classify the angle pair. (Hint: Think of the utility pole as a line for these problems.)

11. \(\angle 5 \) and \(\angle 6 \) ____________________________
12. \(\angle 1 \) and \(\angle 4 \) ____________________________

13. \(\angle 1 \) and \(\angle 2 \) ____________________________
14. \(\angle 5 \) and \(\angle 3 \) ____________________________
Find each angle measure.

1. \(m\angle 1 \)
2. \(m\angle 2 \)

3. \(m\angle ABC \)
4. \(m\angle DEF \)

Complete the two-column proof to show that same-side exterior angles are supplementary.

5. Given: \(p \parallel q \)
 Prove: \(m\angle 1 + m\angle 3 = 180^\circ \)

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (p \parallel q)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. a. (_________)</td>
<td>2. Lin. Pair Thm.</td>
</tr>
<tr>
<td>3. (\angle 1 \equiv \angle 2)</td>
<td>3. b. (_________)</td>
</tr>
<tr>
<td>4. c. (_________)</td>
<td>4. Def. of (\equiv \angle)</td>
</tr>
<tr>
<td>5. d. (_________)</td>
<td>5. e. (_________)</td>
</tr>
</tbody>
</table>

6. Ocean waves move in parallel lines toward the shore. The figure shows Sandy Beaches windsurfing across several waves. For this exercise, think of Sandy's wake as a line. \(m\angle 1 = (2x + 2y)^\circ \) and \(m\angle 2 = (2x + y)^\circ \). Find \(x \) and \(y \).

 \(x = _________ \)

 \(y = _________ \)
LESSON 3-3

Practice B

Proving Lines Parallel

Use the figure for Exercises 1–8. Tell whether lines \(m \) and \(n \) must be parallel from the given information. If they are, state your reasoning. \((\text{Hint: The angle measures may change for each exercise, and the figure is for reference only.})\)

1. \(\angle 7 \cong \angle 3 \)

2. \(m \angle 3 = (15x + 22)^\circ, m \angle 1 = (19x - 10)^\circ, \quad x = 8 \)

3. \(\angle 7 \cong \angle 6 \)

4. \(m \angle 2 = (5x + 3)^\circ, m \angle 3 = (8x - 5)^\circ, \quad x = 14 \)

5. \(m \angle 8 = (6x - 1)^\circ, m \angle 4 = (5x + 3)^\circ, \quad x = 9 \)

6. \(\angle 5 \cong \angle 7 \)

7. \(\angle 1 \cong \angle 5 \)

8. \(m \angle 6 = (x + 10)^\circ, m \angle 2 = (x + 15)^\circ \)

9. Look at some of the printed letters in a textbook. The small horizontal and vertical segments attached to the ends of the letters are called \textit{serifs}. Most of the letters in a textbook are in a serif typeface. The letters on this page do not have serifs, so these letters are in a sans-serif typeface. \((\text{Sans means “without” in French.})\)

 The figure shows a capital letter \(A \) with serifs. Use the given information to write a paragraph proof that the serif, segment \(HI \), is parallel to segment \(JK \).

 \textbf{Given:} \(\angle 1 \) and \(\angle 3 \) are supplementary.

 \textbf{Prove:} \(HI \parallel JK \)
LESSON 3-4 Perpendicular Lines

For Exercises 1–4, name the shortest segment from the point to the line and write an inequality for \(x \). (Hint: One answer is a double inequality.)

1. \(x < PR \) and \(x > RJ \)

2. \(x < 11 \) and \(x > 11 \)

3. \(x > 3 \)

4. \(x > 21 \)

Complete the two-column proof.

5. Given: \(m \perp n \)

Prove: \(\angle 1 \) and \(\angle 2 \) are a linear pair of congruent angles.

Proof:

\[
\begin{array}{|c|c|}
\hline
\text{Statements} & \text{Reasons} \\
\hline
1. a. & 1. Given \\
2. b. & 2. Def. of \perp \\
3. & 3. c. \\
4. m\angle 1 + m\angle 2 = 180^\circ & 4. Add. Prop. of = \\
5. d. & 5. Def. of linear pair \\
\hline
\end{array}
\]

6. The Four Corners National Monument is at the intersection of the borders of Arizona, Colorado, New Mexico, and Utah. It is called the four corners because the intersecting borders are perpendicular. If you were to lie down on the intersection, you could be in four states at the same time—the only place in the United States where this is possible. The figure shows the Colorado-Utah border extending north in a straight line until it intersects the Wyoming border at a right angle. Explain why the Colorado-Wyoming border must be parallel to the Colorado–New Mexico border.

Figure: Four corners monument with borders shown.
LESSON 3-5 Practice B
Slopes of Lines

Use the slope formula to determine the slope of each line.

1. \(\overrightarrow{AB}\) __________

2. \(\overrightarrow{CD}\) __________

3. \(\overrightarrow{EF}\) __________

4. \(\overrightarrow{GH}\) __________

Graph each pair of lines. Use slopes to determine whether the lines are parallel, perpendicular, or neither.

5. \(\overrightarrow{IJ}\) and \(\overrightarrow{KL}\) for \(I(1, 0), J(5, 3), K(6, -1),\) and \(L(0, 2)\) __________

6. \(\overrightarrow{PQ}\) and \(\overrightarrow{RS}\) for \(P(5, 1), Q(-1, -1), R(2, 1),\) and \(S(3, -2)\) __________

7. At a ski resort, the different ski runs down the mountain are color-coded according to difficulty. Green is easy, blue is medium, and black is hard. Assume that the ski runs below are rated only according to their slope (steeper is harder) and that there is one green, one blue, and one black run. Assign a color to each ski run.

 Emerald \(\left(m = \frac{4}{7} \right)\)

 Diamond \(\left(m = \frac{5}{4} \right)\)

 Ruby \(\left(m = \frac{5}{8} \right)\)
Write the equation of each line in the given form.

1. the horizontal line through (3, 7) in point-slope form

2. the line with slope \(\frac{-8}{5} \) through (1, -5) in point-slope form

3. the line through \(\left(-\frac{1}{2}, \frac{7}{2} \right) \) and (2, 14) in slope-intercept form

4. the line with \(x \)-intercept \(-2\) and \(y \)-intercept \(-1\) in slope-intercept form

Graph each line.

5. \(y + 3 = \frac{3}{4}(x + 1) \)

6. \(y = -\frac{4}{3}x + 2 \)

Determine whether the lines are parallel, intersect, or coincide.

7. \(x - 5y = 0, y + 1 = \frac{1}{5}(x + 5) \)

8. \(2y + 2 = x, \frac{1}{2}x = -1 + y \)

9. \(y = 4(x - 3), \frac{3}{4} + 4y = -\frac{1}{4}x \)

An aquifer is an underground storehouse of water. The water is in tiny crevices and pockets in the rock or sand, but because aquifers underlay large areas of land, the amount of water in an aquifer can be vast. Wells and springs draw water from aquifers.

10. Two relatively small aquifers are the Rush Springs (RS) aquifer and the Arbuckle-Simpson (AS) aquifer, both in Oklahoma. Suppose that starting on a certain day in 1985, 52 million gallons of water per day were taken from the RS aquifer, and 8 million gallons of water per day were taken from the AS aquifer. If the RS aquifer began with 4500 million gallons of water and the AS aquifer began with 3000 million gallons of water and no rain fell, write a slope-intercept equation for each aquifer and find how many days passed until both aquifers held the same amount of water. (Round to the nearest day.)
LESSON 4-1
Classifying Triangles

Classify each triangle by its angle measures.
(Note: Some triangles may belong to more than one class.)

1. \(\triangle ABD \)
2. \(\triangle ADC \)
3. \(\triangle BCD \)

Classify each triangle by its side lengths.
(Note: Some triangles may belong to more than one class.)

4. \(\triangle GIJ \)
5. \(\triangle HIJ \)
6. \(\triangle GHJ \)

Find the side lengths of each triangle.

7. \[
\begin{align*}
R & \quad 3x - 0.4 \\
P & \quad x + 0.1 \\
Q & \quad x + 1.4
\end{align*}
\]

9. Min works in the kitchen of a catering company. Today her job is to cut whole pita bread into small triangles. Min uses a cutting machine, so every pita triangle comes out the same. The figure shows an example. Min has been told to cut 3 pita triangles for every guest. There will be 250 guests. If the pita bread she uses comes in squares with 20-centimeter sides and she doesn’t waste any bread, how many squares of whole pita bread will Min have to cut up?

10. Follow these instructions and use a protractor to draw a triangle with sides of 3 cm, 4 cm, and 5 cm. First draw a 5-cm segment. Set your compass to 3 cm and make an arc from one end of the 5-cm segment. Now set your compass to 4 cm and make an arc from the other end of the 5-cm segment. Mark the point where the arcs intersect. Connect this point to the ends of the 5-cm segment. Classify the triangle by sides and by angles. Use the Pythagorean Theorem to check your answer.
LESSON 4-2
Practice B
Angle Relationships in Triangles

1. An area in central North Carolina is known as the Research Triangle because of the relatively large number of high-tech companies and research universities located there. Duke University, the University of North Carolina at Chapel Hill, and North Carolina State University are all within this area. The Research Triangle is roughly bounded by the cities of Chapel Hill, Durham, and Raleigh. From Chapel Hill, the angle between Durham and Raleigh measures 54.8°. From Raleigh, the angle between Chapel Hill and Durham measures 24.1°. Find the angle between Chapel Hill and Raleigh from Durham.

2. The acute angles of right triangle ABC are congruent. Find their measures.

The measure of one of the acute angles in a right triangle is given. Find the measure of the other acute angle.

3. 44.9°

4. $(90 - z)^\circ$

5. 0.3°

Find each angle measure.

6. $m\angle B$

7. $m\angle PRS$

8. In $\triangle LMN$, the measure of an exterior angle at N measures 99°. $m\angle L = \frac{1}{3}x^\circ$ and $m\angle M = \frac{2}{3}x^\circ$. Find $m\angle L$, $m\angle M$, and $m\angle LNM$.

9. $m\angle E$ and $m\angle G$

10. $m\angle T$ and $m\angle V$

11. In $\triangle ABC$ and $\triangle DEF$, $m\angle A = m\angle D$ and $m\angle B = m\angle E$. Find $m\angle F$ if an exterior angle at A measures 107°, $m\angle B = (5x + 2)^\circ$, and $m\angle C = (5x + 5)^\circ$.

12. The angle measures of a triangle are in the ratio $3 : 4 : 3$. Find the angle measures of the triangle.
Practice B
Congruent Triangles

In baseball, home plate is a pentagon. Pentagon \(ABCDEF\) is a diagram of a regulation home plate. The baseball rules are very specific about the exact dimensions of this pentagon so that every home plate is congruent to every other home plate. If pentagon \(PQRST\) is another home plate, identify each congruent corresponding part.

1. \(\angle S \cong \angle \)
2. \(\angle B \cong \angle \)
3. \(\overline{EA} \cong \)
4. \(\angle E \cong \angle \)
5. \(\overline{PQ} \cong \)
6. \(\overline{TS} \cong \)

Given: \(\triangle DEF \cong \triangle LMN\). Find each value.

7. \(m\angle L = \)
8. \(EF = \)
9. Write a two-column proof.

 Given: \(\angle U \cong \angle UWV \cong \angle ZXY \cong \angle Z, \overline{UV} \cong \overline{WV}, \overline{XY} \cong \overline{ZY}, \overline{UX} \cong \overline{WZ}\)

 Prove: \(\triangle UVW \cong \triangle XYZ\)

 Proof:

10. Given: \(\triangle CDE \cong \triangle HIJ, DE = 9x, \text{ and } IJ = 7x + 3\). Find \(x\) and \(DE\).

11. Given: \(\triangle CDE \cong \triangle HIJ, m\angle D = (5y + 1)^\circ, \text{ and } m\angle I = (6y - 25)^\circ\). Find \(y\) and \(m\angle D\).
LESSON 4-4
Triangle Congruence: SSS and SAS

Write which of the SSS or SAS postulates, if either, can be used to prove the triangles congruent. If no triangles can be proved congruent, write neither.

1. ________________
2. ________________

3. ________________
4. ________________

Find the value of x so that the triangles are congruent.

5. $x =$ ________________
6. $x =$ ________________

The Hatfield and McCoy families are feuding over some land. Neither family will be satisfied unless the two triangular fields are exactly the same size. You know that C is the midpoint of each of the intersecting segments. Write a two-column proof that will settle the dispute.

7. Given: C is the midpoint of AD and BE.

 Prove: $\triangle ABC \cong \triangle DEC$

 Proof:
Students in Mrs. Marquez’s class are watching a film on the uses of geometry in architecture. The film projector casts the image on a flat screen as shown in the figure. The dotted line is the bisector of $\angle ABC$. Tell whether you can use each congruence theorem to prove that $\triangle ABD \cong \triangle CBD$. If not, tell what else you need to know.

1. Hypotenuse-Leg

2. Angle-Side-Angle

3. Angle-Angle-Side

Write which postulate, if any, can be used to prove the pair of triangles congruent.

4.

5.

6.

7.

Write a paragraph proof.

8. Given: $\angle PQU \cong \angle TSU$, $\angle QUR$ and $\angle SUR$ are right angles.

Prove: $\triangle RUQ \cong \triangle RUS$
LESSON 4-6
Triangle Congruence: CPCTC

1. Heike Dreschler set the Woman’s World Junior Record for the long jump in 1983. She jumped about 23.4 feet. The diagram shows two triangles and a pond. Explain whether Heike could have jumped the pond along path BA or along path CA.

Possible answer: Because $\triangle HDE \cong \triangle CDAB$ by the Vertical Thm. the triangles are congruent by ASA, and each side in $\triangle ABC$ has the same length as its corresponding side in $\triangle EDC$. Heike could jump about 23 ft. The distance along path BA is 20 ft because BA corresponds with DE, so Heike could have jumped this distance. The distance along path CA is 25 ft because CA corresponds with CE, so Heike could not have jumped this distance.

Write a flowchart proof.

2. Given: $\angle L \cong \angle J$, $KJ \parallel LM$
 Prove: $\angle LKM \cong \angle JMK$

Write a two-column proof.

3. Given: $FGHI$ is a rectangle.
 Prove: The diagonals of a rectangle have equal lengths.
LESSON 4-7 Introduction to Coordinate Proof

Position an isosceles triangle with sides of 8 units, 5 units, and 5 units in the coordinate plane. Label the coordinates of each vertex.

Hint: Use the Pythagorean Theorem.

1. Center the long side on the x-axis at the origin.

2. Place the long side on the y-axis centered at the origin.

Write a coordinate proof.

3. **Given:** Rectangle $ABCD$ has vertices $A(0, 4), B(6, 4), C(6, 0), D(0, 0)$. E is the midpoint of DC. F is the midpoint of DA.

Prove: The area of rectangle $DEGF$ is one-fourth the area of rectangle $ABCD$.
1. Given: \(HI \cong HJ, HK \perp IJ \)

Prove: \(HK \) bisects \(IJ \).

Possible answer: It is given that \(HI \) is congruent to \(HJ \), so by the Isosceles Triangle Theorem, \(HK \) must be congruent to \(J \) by the definition of segment bisector.

2. An obelisk is a tall, thin, four-sided monument that tapers to a pyramidal top. The most well-known obelisk to Americans is the Washington Monument on the National Mall in Washington, D.C. Each face of the pyramidal top of the Washington Monument is an isosceles triangle. The height of each triangle is 55.5 feet, and the base of each triangle measures 34.4 feet. Find the length, to the nearest tenth of a foot, of one of the two equal legs of the triangle.

Find each value.

3. \(m \angle X = \) __________

4. \(BC = \) __________

5. \(PQ = \) __________

6. \(m \angle K = \) __________

7. \(t = \) __________

8. \(n = \) __________

9. \(m \angle A = \) __________

10. \(x = \) __________
Diana is in an archery competition. She stands at A, and the target is at D. Her competitors stand at B and C.

1. The distance from each of her competitors to her target is equal. Explain whether the flight path of Diana’s arrow, \(AD \), must be a perpendicular bisector of \(BC \).

Possible answer: The flight path of Diana’s arrow does not have to be a perpendicular bisector of \(BC \). For that to be true, Diana must be equidistant from each of her competitors.

Use the figure for Exercises 2–5.

2. Given that line \(p \) is the perpendicular bisector of \(\overline{XZ} \) and \(XY = 15.5 \), find \(ZY \).

3. Given that \(XZ = 38 \), \(YX = 27 \), and \(YZ = 27 \), find \(ZW \).

4. Given that line \(p \) is the perpendicular bisector of \(\overline{XZ} \); \(XY = 4n \), and \(YZ = 14 \), find \(n \).

5. Given that \(XY = ZY \), \(WX = 6x - 1 \), and \(XZ = 10x + 16 \), find \(ZW \).

Use the figure for Exercises 6–9.

6. Given that \(FG = HG \) and \(\angle FEH = 55^\circ \), find \(\angle GEH \).

7. Given that \(\overline{EG} \) bisects \(\angle FEH \) and \(GF = \sqrt{2} \), find \(GH \).

8. Given that \(\angle FEG \cong \angle GEH \), \(FG = 10z - 30 \), and \(HG = 7z + 6 \), find \(FG \).

9. Given that \(GF = GH \), \(\angle GEF = \frac{8}{3}a^\circ \), and \(\angle GEH = 24^\circ \), find \(a \).

Write an equation in point-slope form for the perpendicular bisector of the segment with the given endpoints.

10. \(L(4, 0), M(-2, 3) \)

11. \(T(0, -3), U(0, 1) \)

12. \(A(-1, 6), B(-3, -4) \)
LESSON 5-2
Practice B

Bisectors of Triangles

Use the figure for Exercises 1 and 2. \(\overline{SV} \), \(\overline{TV} \), and \(\overline{UV} \) are perpendicular bisectors of the sides of \(\triangle PQR \). Find each length.

1. \(RV \)
2. \(TR \)

Find the circumcenter of the triangle with the given vertices.

3. \(A(0, 0), B(0, 5), C(5, 0) \)
4. \(D(0, 7), E(-3, 1), F(3, 1) \)

\[(__, __) \quad (__, __) \]

Use the figure for Exercises 7 and 8. \(\overline{GJ} \) and \(\overline{IJ} \) are angle bisectors of \(\triangle GHI \). Find each measure.

5. the distance from \(J \) to \(\overline{GH} \)

6. \(m\angle JGK \)

Raleigh designs the interiors of cars. He is given two tasks to complete on a new production model.

7. A triangular surface as shown in the figure is molded into the driver's side door as an armrest. Raleigh thinks he can fit a cup holder into the triangle, but he'll have to put the largest possible circle into the triangle. Explain how Raleigh can do this. Sketch his design on the figure.

8. The car's logo is the triangle shown in the figure. Raleigh has to use this logo as the center of the steering wheel. Explain how Raleigh can do this. Sketch his design on the figure.
LESSON 5-3 Medians and Altitudes of Triangles

Use the figure for Exercises 1–4. \(GB = 12\frac{2}{3} \) and \(CD = 10 \).
Find each length.

1. \(FG \)
2. \(BF \)
3. \(GD \)
4. \(CG \)

5. A triangular compass needle will turn most easily if it is attached to the compass face through its centroid. Find the coordinates of the centroid.

Find the orthocenter of the triangle with the given vertices.

6. \(X(−5, 4), Y(2, −3), Z(1, 4) \)
7. \(A(0, −1), B(2, −3), C(4, −1) \)

Use the figure for Exercises 8 and 9. \(\overline{HL}, \overline{IM}, \) and \(\overline{JK} \) are medians of \(\triangle HIJ \).

8. Find the area of the triangle.

9. If the perimeter of the triangle is 49 meters, then find the length of \(\overline{MH} \). (Hint: What kind of a triangle is it?)

10. Two medians of a triangle were cut apart at the centroid to make the four segments shown below. Use what you know about the Centroid Theorem to reconstruct the original triangle from the four segments shown. Measure the side lengths of your triangle to check that you constructed medians. (Note: There are many possible answers.)
The Triangle Midsegment Theorem

Use the figure for Exercises 1–6. Find each measure.

1. HI
2. DF
3. GE
4. $m\angle HIF$
5. $m\angle HGD$
6. $m\angle D$

The Bermuda Triangle is a region in the Atlantic Ocean off the southeast coast of the United States. The triangle is bounded by Miami, Florida; San Juan, Puerto Rico; and Bermuda. In the figure, the dotted lines are midsegments.

7. Use the distances in the chart to find the perimeter of the Bermuda Triangle.

8. Find the perimeter of the midsegment triangle within the Bermuda Triangle.

9. How does the perimeter of the midsegment triangle compare to the perimeter of the Bermuda Triangle?

Write a two-column proof that the perimeter of a midsegment triangle is half the perimeter of the triangle.

10. Given: US, ST, and TU are midsegments of $\triangle PQR$.

Prove: The perimeter of $\triangle STU = \frac{1}{2}(PQ + QR + RP)$.
LESSON 5-5
Indirect Proof and Inequalities in One Triangle

Write an indirect proof that the angle measures of a triangle cannot add to more than 180°.

1. State the assumption that starts the indirect proof.

2. Use the Exterior Angle Theorem and the Linear Pair Theorem to write the indirect proof.

3. Write the angles of \(\triangle DEF \) in order from smallest to largest.

4. Write the sides of \(\triangle GHI \) in order from shortest to longest.

Tell whether a triangle can have sides with the given lengths. If not, explain why not.

5. 8, 8, 16

6. 0.5, 0.7, 0.3

7. 10\(\frac{1}{2} \), 4, 14

8. 3x + 2, \(x^2 \), 2x when \(x = 4 \)

9. 3x + 2, \(x^2 \), 2x when \(x = 6 \)

The lengths of two sides of a triangle are given. Find the range of possible lengths for the third side.

10. 8.2 m, 3.5 m

11. 298 ft, 177 ft

12. 3\(\frac{1}{2} \) mi, 4 mi

13. The annual Cheese Rolling happens in May at Gloucestershire, England. As the name suggests, large, 7–9 pound wheels of cheese are rolled down a steep hill, and people chase after them. The first person to the bottom wins cheese. Renaldo wants to go to the Cheese Rolling. He plans to leave from Atlanta and fly into London (4281 miles). On the return, he will fly back from London to New York City (3470 miles) to visit his aunt. Then Renaldo heads back to Atlanta. Atlanta, New York City, and London do not lie on the same line. Find the range of the total distance Renaldo could travel on his trip.
LESSON 5-6

Inequalities in Two Triangles

Compare the given measures.

1. $m \angle K$ and $m \angle M$

2. AB and DE

3. QR and ST

Find the range of values for x.

4. $(3x - 21)^\circ$

5. 37.5

6. $(x + 12)^\circ$

7. 118°

8. You have used a compass to copy and bisect segments and angles and to draw arcs and circles. A compass has a drawing leg, a pivot leg, and a hinge at the angle between the legs. Explain why and how the measure of the angle at the hinge changes if you draw two circles with different diameters.
LESSON 5-7
The Pythagorean Theorem

Find the value of \(x\). Give your answer in simplest radical form.

1. \[\begin{align*}
6^2 + 5^2 &= x^2 \\
x &= \sqrt{61}
\end{align*} \]

2. \[\begin{align*}
13^2 &= x^2 + 15^2 \\
x &= \sqrt{119}
\end{align*} \]

3. \[\begin{align*}
14^2 &= x^2 + (x + 2)^2 \\
x &= \sqrt{10}
\end{align*} \]

4. The aspect ratio of a TV screen is the ratio of the width to the height of the image. A regular TV has an aspect ratio of 4 : 3. Find the height and width of a 42-inch TV screen to the nearest tenth of an inch. (The measure given is the length of the diagonal across the screen.)

Find the height and width of a 42-inch TV screen to the nearest tenth of an inch.

5. A “wide-screen” TV has an aspect ratio of 16 : 9. Find the length of a diagonal on a wide-screen TV screen that has the same height as the screen in Exercise 4.

Find the length of a diagonal on a wide-screen TV screen that has the same height as the screen in Exercise 4.

Find the missing side lengths. Give your answer in simplest radical form. Tell whether the side lengths form a Pythagorean Triple.

6. \[\begin{align*}
6^2 + 6.5^2 &= 13.2
\end{align*} \]

7. \[\begin{align*}
15^2 + 20^2 &= 33.7
\end{align*} \]

8. \[\begin{align*}
3^2 + 9^2 &= 100
\end{align*} \]

Tell whether the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right.

9. 15, 18, 20

10. 7, 8, 11

11. 6, 7, 3\sqrt{13}

12. Kitty has a triangle with sides that measure 16, 8, and 13. She does some calculations and finds that \(256 \div 64 > 169\). Kitty concludes that the triangle is obtuse. Evaluate Kitty’s conclusion and Kitty’s reasoning.

Possible answer: The triangle is obtuse, so Kitty is correct. But Kitty did not use the Pythagorean Inequalities Theorem correctly. The measure of the longest side should be substituted for \(c\), so \(256 \div 64 > 169\) is the inequality that shows that the triangle is obtuse.
Practice B

Applying Special Right Triangles

Find the value of x in each figure. Give your answer in simplest radical form.

1. $\sqrt{8} \quad 2. \quad 3. \quad \sqrt{2} \quad \sqrt{2} \quad \sqrt{2}

Find the values of x and y. Give your answers in simplest radical form.

4. $x = \quad y = \quad 5. \quad x = \quad y = \quad 6. \quad x = \quad y = \quad$

Lucia is an archaeologist trekking through the jungle of the Yucatan Peninsula. She stumbles upon a stone structure covered with creeper vines and ferns. She immediately begins taking measurements of her discovery. (Hint: Drawing some figures may help.)

7. Around the perimeter of the building, Lucia finds small alcoves at regular intervals carved into the stone. The alcoves are triangular in shape with a horizontal base and two sloped equal-length sides that meet at a right angle. Each of the sloped sides measures $14\frac{1}{4}$ inches. Lucia has also found several stone tablets inscribed with characters. The stone tablets measure $22\frac{1}{8}$ inches long. Lucia hypothesizes that the alcoves once held the stone tablets. Tell whether Lucia’s hypothesis may be correct. Explain your answer.

8. Lucia also finds several statues around the building. The statues measure $9\frac{7}{16}$ inches tall. She wonders whether the statues might have been placed in the alcoves. Tell whether this is possible. Explain your answer.
Tell whether each figure is a polygon. If it is a polygon, name it by the number of its sides.

1. __________
2. __________
3. __________

4. For a polygon to be regular, it must be both equiangular and equilateral. Name the only type of polygon that must be regular if it is equiangular. __________

Tell whether each polygon is regular or irregular. Then tell whether it is concave or convex.

5. __________
6. __________
7. __________

8. Find the sum of the interior angle measures of a 14-gon. __________

9. Find the measure of each interior angle of hexagon $ABCDEF$. __________

10. Find the value of n in pentagon $PQRST$. __________

Before electric or steam power, a common way to power machinery was with a waterwheel. The simplest form of waterwheel is a series of paddles on a frame partially submerged in a stream. The current in the stream pushes the paddles forward and turns the frame. The power of the turning frame can then be used to drive machinery to saw wood or grind grain. The waterwheel shown has a frame in the shape of a regular octagon.

11. Find the measure of one interior angle of the waterwheel. __________

12. Find the measure of one exterior angle of the waterwheel. __________
LESSON 6-2
Properties of Parallelograms

A gurney is a wheeled cot or stretcher used in hospitals. Many gurneys are made so that the base will fold up for easy storage in an ambulance. When partially folded, the base forms a parallelogram. In $\square STUV$, $VU = 91$ centimeters, $UW = 108.8$ centimeters, and $m\angle TSV = 57^\circ$. Find each measure.

1. SW
2. TS
3. US

4. $m\angle SVU$
5. $m\angle STU$
6. $m\angle TUV$

$JKLM$ is a parallelogram. Find each measure.

7. $m\angle L$
8. $m\angle K$
9. MJ

$VWXYZ$ is a parallelogram. Find each measure.

10. VX
11. XZ

12. ZW
13. WY

14. Three vertices of $\square ABCD$ are $B(-3, 3)$, $C(2, 7)$, and $D(5, 1)$. Find the coordinates of vertex A.

Write a two-column proof.

15. Given: $DEFG$ is a parallelogram.
 Prove: $m\angle DHG = m\angle EDH + m\angle FGH$
Practice B 6-3 Conditions for Parallelograms

For Exercises 1 and 2, determine whether the figure is a parallelogram for the given values of the variables. Explain your answers.

1. \(x = 9\) and \(y = 11\)

2. \(a = 4.3\) and \(b = 13\)

Determine whether each quadrilateral must be a parallelogram. Justify your answers.

3.

4.

5. \(x + (180 - x)^\circ\)

Use the given method to determine whether the quadrilateral with the given vertices is a parallelogram.

6. Find the slopes of all four sides: \(J(-4, -1), K(-7, -4), L(2, -10), M(5, -7)\)

7. Find the lengths of all four sides: \(P(2, 2), Q(1, -3), R(-4, 2), S(-3, 7)\)

8. Find the slopes and lengths of one pair of opposite sides:
\(T\left(\frac{3}{2}, -2\right), U\left(\frac{3}{2}, 4\right), V\left(-\frac{1}{2}, 0\right), W\left(-\frac{1}{2}, -6\right)\)
LESSON 6-4
Properties of Special Parallelograms

Tell whether each figure must be a rectangle, rhombus, or square based on the information given. Use the most specific name possible.

1.
2.
3.

A modern artist’s sculpture has rectangular faces. The face shown here is 9 feet long and 4 feet wide. Find each measure in simplest radical form. (*Hint: Use the Pythagorean Theorem.*)

4. $DC =$ ________________
5. $AD =$ ________________
6. $DB =$ ________________
7. $AE =$ ________________

$VWXYZ$ is a rhombus. Find each measure.

8. $XY =$ ________________
9. $\angle YVW =$ ________________
10. $\angle VYX =$ ________________
11. $\angle XYZ =$ ________________

12. The vertices of square $JKLM$ are $J(-2, 4)$, $K(-3, -1)$, $L(2, -2)$, and $M(3, 3)$. Find each of the following to show that the diagonals of square $JKLM$ are congruent perpendicular bisectors of each other.

$JL =$ __________

slope of $JL =$ __________

midpoint of $JL =$ (_______, _______)

$KM =$ __________

slope of $KM =$ __________

midpoint of $KM =$ (_______, _______)

Write a paragraph proof.

13. Given: $ABCD$ is a rectangle.
Prove: $\angle EDC \cong \angle ECD$
LESSON 6-5 Practice B Conditions for Special Parallelograms

1. On the National Mall in Washington, D.C., a reflecting pool lies between the Lincoln Memorial and the World War II Memorial. The pool has two 2300-foot-long sides and two 150-foot-long sides. Tell what additional information you need to know in order to determine whether the reflecting pool is a rectangle. (Hint: Remember that you have to show it is a parallelogram first.)

Possible answer: To know that the reflecting pool is a parallelogram, the congruent sides must be opposite each other. If this is true, then knowing that one angle in the pool is a right angle or that the diagonals are congruent proves that the pool is a rectangle.

Use the figure for Exercises 2–5. Determine whether each conclusion is valid. If not, tell what additional information is needed to make it valid.

2. Given: \(\overline{AC} \) and \(\overline{BD} \) bisect each other. \(\overline{AC} \cong \overline{BD} \)
 Conclusion: \(ABCD \) is a square.

3. Given: \(\overline{AC} \perp \overline{BD}, \overline{AB} \cong \overline{BC} \)
 Conclusion: \(ABCD \) is a rhombus.

4. Given: \(\overline{AB} \cong \overline{DC}, \overline{AD} \cong \overline{BC}, m\angle ADB = m\angle ABD = 45^\circ \)
 Conclusion: \(ABCD \) is a square.

5. Given: \(\overline{AB} \parallel \overline{DC}, \overline{AD} \cong \overline{BC}, \overline{AC} \cong \overline{BD} \)
 Conclusion: \(ABCD \) is a rectangle.

Find the lengths and slopes of the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all names that apply.

6. \(E(-2, -4), F(0, -1), G(-3, 1), H(-5, -2) \)
 \(EG = \) _____ \(FH = \) _____
 slope of \(EG = \) _____ slope of \(FH = \) _____

7. \(P(-1, 3), Q(-2, 5), R(0, 4), S(1, 2) \)
 \(PR = \) _____ \(QS = \) _____
 slope of \(PR = \) _____ slope of \(QS = \) _____
LESSON 6-6
Properties of Kites and Trapezoids

In kite $ABCD$, $m\angle BAC = 35^\circ$ and $m\angle BCD = 44^\circ$.

For Exercises 1–3, find each measure.

1. $m\angle ABD$
2. $m\angle DCA$
3. $m\angle ABC$

4. Find the area of $\triangle EFG$.

5. Find $m\angle Z$.

6. $KM = 7.5$, and $NM = 2.6$. Find LN.

7. Find the value of n so that $PQRS$ is isosceles.

8. Find the value of x so that $EFGH$ is isosceles.

9. $BD = 7a - 0.5$, and $AC = 5a + 2.3$. Find the value of a so that $ABCD$ is isosceles.

10. $QS = 8z^2$, and $RT = 6z^2 + 38$. Find the value of z so that $QRST$ is isosceles.

Use the figure for Exercises 11 and 12. The figure shows a ziggurat. A ziggurat is a stepped, flat-topped pyramid that was used as a temple by ancient peoples of Mesopotamia. The dashed lines show that a ziggurat has sides roughly in the shape of a trapezoid.

11. Each “step” in the ziggurat has equal height. Give the vocabulary term for \overline{MN}.

12. The bottom of the ziggurat is 27.3 meters long, and the top of the ziggurat is 11.6 meters long. Find MN.
LESSON 7-1 Practice B
Ratio and Proportion

Use the graph for Exercises 1–3. Write a ratio expressing the slope of each line.

1. \(\ell \) __________
2. \(m \) __________
3. \(n \) __________

4. The ratio of the angle measures in a quadrilateral is 1 : 4 : 5 : 6. Find each angle measure.

5. The ratio of the side lengths in a rectangle is 5 : 2 : 5 : 2, and its area is 90 square feet. Find the side lengths.

For part of her homework, Celia measured the angles and the lengths of the sides of two triangles. She wrote down the ratios for angle measures and side lengths. Two of the ratios were 4 : 7 : 8 and 3 : 8 : 13.

6. When Celia got to school the next day, she couldn’t remember which ratio was for angles and which was for sides. Tell which must be the ratio of the lengths of the sides. Explain your answer.

7. Find the measures of the angles of one of Celia’s triangles.

Solve each proportion.

8. \(\frac{28}{p} = \frac{42}{3} \)
 \(p = \) __________

9. \(\frac{28}{24} = \frac{q}{102} \)
 \(q = \) __________

10. \(\frac{3}{4.5} = \frac{7}{r} \)
 \(r = \) __________

11. \(\frac{9}{s} = \frac{s}{25} \)
 \(s = \) __________

12. \(\frac{50}{2t + 4} = \frac{2t + 4}{2} \)
 \(t = \) __________

13. \(\frac{u + 3}{8} = \frac{5}{u - 3} \)
 \(u = \) __________

14. Given that 12\(a = 20b \), find the ratio of \(a \) to \(b \) in simplest form.

15. Given that 34\(x = 51y \), find the ratio \(x : y \) in simplest form.
Practice B
Ratios in Similar Polygons

Identify the pairs of congruent corresponding angles and the corresponding sides.

1. \(\triangle ABC \) and \(\triangle XYZ \)
 - \(\angle A \equiv \angle X \)
 - \(\angle B \equiv \angle Y \)
 - \(\angle C \equiv \angle Z \)
 - \(AB : XZ = 2 : 3 \)

2. \(\triangle KLP \) and \(\triangle JQR \)
 - \(\angle K \equiv \angle J \)
 - \(\angle L \equiv \angle Q \)
 - \(\angle P \equiv \angle R \)
 - \(KL : PJ = 10 : 8 \)

Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement. If not, explain why not.

3. parallelograms \(EFGH \) and \(TUVW \)
 - Yes; \(EF : TU = 4 : 3 \)
 - Possible answer: No; sides cannot be matched to have corresponding sides proportional.

4. \(\triangle CDE \) and \(\triangle LMN \)
 - Yes

Tell whether the polygons must be similar based on the information given in the figures.

5. \(\square ABCD \) and \(\square PQRS \)
 - Yes

6. \(\triangle TUV \) and \(\triangle WXY \)
 - Yes
Practice B

LESSON 7-3 Triangle Similarity: AA, SSS, SAS

For Exercises 1 and 2, explain why the triangles are similar and write a similarity statement.

1.
 ![Triangle A](image1)

 Possible answer:

2.
 ![Triangle B](image2)

 Possible answer:

For Exercises 3 and 4, verify that the triangles are similar. Explain why.

3. \(\triangle JLK \) and \(\triangle JMN \)

 Possible answer:

4. \(\triangle PQR \) and \(\triangle UTS \)

 Possible answer:

For Exercise 5, explain why the triangles are similar and find the stated length.

5. \(DE \)

 Possible answer:
Practice B

7-4 Applying Properties of Similar Triangles

Find each length.

1. $BH = \frac{9}{3} = 3$

2. $MV = \frac{14}{49} = 1$

Verify that the given segments are parallel.

3. PQ and NM

 $\frac{PQ}{NM} = \frac{9}{12} = \frac{3}{4}$

4. WX and DE

 $\frac{WX}{DE} = \frac{1.5}{2.1} = \frac{5}{7}$

Find each length.

5. SR and RQ

 $SR = \frac{144}{7} = 20$, $RQ = \frac{108}{5x+2}$

6. BE and DE

 $BE = \frac{2.5}{2y-0.25}$

7. In $\triangle ABC$, \overline{BD} bisects $\angle ABC$ and $\overline{AD} \equiv \overline{CD}$. Tell what kind of $\triangle ABC$ must be.

 $\triangle ABC$ is isosceles.
Refer to the figure for Exercises 1–3. A city is planning an outdoor concert for an Independence Day celebration. To hold speakers and lights, a crew of technicians sets up a scaffold with two platforms by the stage. The first platform is 8 feet 2 inches off the ground. The second platform is 7 feet 6 inches above the first platform. The shadow of the first platform stretches 6 feet 3 inches across the ground.

1. Explain why $\triangle ABC$ is similar to $\triangle ADE$.
 (Hint: The sun’s rays are parallel.)
 Possible answer: Because the sun’s rays are parallel, \(\overline{BC} \parallel \overline{DE} \).
 \(\triangle ABC \) and \(\triangle ADE \) are congruent corresponding angles, and \(\angle A \) is common to both triangles. So $\triangle ABC \sim \triangle ADE$ by AA similarity.

2. Find the length of the shadow of the second platform in feet and inches to the nearest inch.

3. A 5-foot-8-inch-tall technician is standing on top of the second platform. Find the length of the shadow the scaffold and the technician cast in feet and inches to the nearest inch.

Refer to the figure for Exercises 4–6. Ramona wants to renovate the kitchen in her house. The figure shows a blueprint of the new kitchen drawn to a scale of 1 cm : 2 ft. Use a centimeter ruler and the figure to find each actual measure in feet.

4. width of the kitchen
 10 ft

5. length of the kitchen
 14 ft

6. width of the sink
 2 ft

7. area of the pantry
 12 ft²

Given that $DEFG \sim WXYZ$, find each of the following.

8. perimeter of $WXYZ$ __________________

9. area of $WXYZ$ ________________
A jeweler designs a setting that can hold a gem in the shape of a parallelogram. The figure shows the outline of the gem. The client, however, wants a gem and setting that is slightly larger.

1. Draw the gem after a dilation with a scale factor of $\frac{3}{2}$.

2. The client is so pleased with her ring that she decides to have matching but smaller earrings made using the same pattern. Draw the gem after a dilation from the original pattern with a scale factor of $\frac{1}{2}$.

3. Given that $\triangle ABC \sim \triangle ADE$, find the scale factor and the coordinates of D.

4. Given that $\triangle PQR \sim \triangle PST$, find the scale factor and the coordinates of S.
Write a similarity statement comparing the three triangles in each diagram.

1. \(\triangle JLM \sim \triangle KML \)

2. \(\triangle DEF \sim \triangle GEF \)

3. \(\triangle HIL \sim \triangle JKL \)

Find the geometric mean of each pair of numbers. If necessary, give the answer in simplest radical form.

4. \(\frac{1}{4} \) and 4

5. 3 and 75

6. 4 and 18

7. \(\frac{1}{2} \) and 9

8. 10 and 14

9. 4 and 12.25

Find \(x \), \(y \), and \(z \).

10. \(\frac{x}{5} = \frac{y}{7} \)

11. \(\frac{x}{20} = \frac{y}{10} \)

12. \(\frac{x}{\sqrt{6}} = \frac{y}{3} \)

13. \(\frac{z}{15} = \frac{x}{6} \)

14. \(\frac{z}{25} = \frac{x}{65} \)

15. \(\frac{z}{27} = \frac{x}{18} \)

16. The Coast Guard has sent a rescue helicopter to retrieve passengers off a disabled ship. The ship has called in its position as 1.7 miles from shore. When the helicopter passes over a buoy that is known to be 1.3 miles from shore, the angle formed by the shore, the helicopter, and the disabled ship is 90°. Determine what the altimeter would read to the nearest foot when the helicopter is directly above the buoy.

Use the diagram to complete each equation.

17. \(\frac{e}{b} = \frac{x}{e} \)

18. \(\frac{d}{b + c} = \frac{a}{d} \)

19. \(\frac{a}{e} = \frac{x}{e} \)
Use the figure for Exercises 1–6. Write each trigonometric ratio as a simplified fraction and as a decimal rounded to the nearest hundredth.

1. \(\sin A \)
2. \(\cos B \)
3. \(\tan B \)

4. \(\sin B \)
5. \(\cos A \)
6. \(\tan A \)

Use special right triangles to write each trigonometric ratio as a simplified fraction.

7. \(\sin 30^\circ \)
8. \(\cos 30^\circ \)
9. \(\tan 45^\circ \)
10. \(\tan 30^\circ \)
11. \(\cos 45^\circ \)
12. \(\tan 60^\circ \)

Use a calculator to find each trigonometric ratio. Round to the nearest hundredth.

13. \(\sin 64^\circ \)
14. \(\cos 58^\circ \)
15. \(\tan 15^\circ \)

Find each length. Round to the nearest hundredth.

16. \(XZ \)
17. \(HI \)
18. \(KM \)

19. \(ST \)
20. \(EF \)
21. \(DE \)
Practice B

8-3 Solving Right Triangles

Use the given trigonometric ratio to determine which angle of the triangle is $\angle A$.

1. $\sin A = \frac{8}{17}$
2. $\cos A = \frac{15}{17}$
3. $\tan A = \frac{15}{8}$
4. $\sin A = \frac{15}{17}$
5. $\cos A = \frac{8}{17}$
6. $\tan A = \frac{8}{15}$

Use a calculator to find each angle measure to the nearest degree.

7. $\sin^{-1}(0.82)$
8. $\cos^{-1}\left(\frac{11}{12}\right)$
9. $\tan^{-1}(5.03)$
10. $\sin^{-1}\left(\frac{3}{8}\right)$
11. $\cos^{-1}(0.23)$
12. $\tan^{-1}\left(\frac{1}{9}\right)$

Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

13. $\triangle ABC$
14. $\triangle DEF$
15. $\triangle GHJ$

16. $\triangle KLM$
17. $\triangle NOP$
18. $\triangle STU$

For each triangle, find all three side lengths to the nearest hundredth and all three angle measures to the nearest degree.

19. $B(-2, -4), C(3, 3), D(-2, 3)$

20. $L(-1, -6), M(1, -6), N(-1, 1)$

21. $X(-4, 5), Y(-3, 5), Z(-3, 4)$
Name ___________________________ Date _______ Class ___________

LESSON 8-4

Angles of Elevation and Depression

Marco breeds and trains homing pigeons on the roof of his building. Classify each angle as an angle of elevation or an angle of depression.

1. ∠1 ________________________
2. ∠2 ________________________
3. ∠3 ________________________
4. ∠4 ________________________

To attract customers to his car dealership, Frank tethers a large red balloon to the ground. In Exercises 5–7, give answers in feet and inches to the nearest inch. (Note: Assume the cord that attaches to the balloon makes a straight segment.)

5. The sun is directly overhead. The shadow of the balloon falls 14 feet 6 inches from the tether. Frank sights an angle of elevation of 67°. Find the height of the balloon. ________________________

6. Find the length of the cord that tethers the balloon. ________________________

7. The wind picks up and the angle of elevation changes to 59°. Find the height of the balloon. ________________________

Lindsey shouts down to Pete from her third-story window.

8. Lindsey is 9.2 meters up, and the angle of depression from Lindsey to Pete is 79°. Find the distance from Pete to the base of the building to the nearest tenth of a meter. ________________________

9. To see Lindsey better, Pete walks out into the street so he is 4.3 meters from the base of the building. Find the angle of depression from Lindsey to Pete to the nearest degree. ________________________

10. Mr. Shea lives in Lindsey’s building. While Pete is still out in the street, Mr. Shea leans out his window to tell Lindsey and Pete to stop all the shouting. The angle of elevation from Pete to Mr. Shea is 72°. Tell whether Mr. Shea lives above or below Lindsey. ________________________
LESSON 8-5 Practice B
Law of Sines and Law of Cosines

Use a calculator to find each trigonometric ratio. Round to the nearest hundredth.

1. \(\sin 111^\circ \) ________
2. \(\cos 150^\circ \) ________
3. \(\tan 163^\circ \) ________
4. \(\sin 92^\circ \) ________
5. \(\cos 129^\circ \) ________
6. \(\tan 99^\circ \) ________
7. \(\sin 170^\circ \) ________
8. \(\cos 96^\circ \) ________
9. \(\tan 117^\circ \) ________

Use the Law of Sines to find each measure. Round lengths to the nearest tenth and angle measures to the nearest degree.

10. \(\triangle ABC \)

11. \(\triangle DEF \)

12. \(\triangle HLG \)

13. \(m\angle J \) ________

14. \(m\angle R \) ________

15. \(m\angle T \) ________

Use the Law of Cosines to find each measure. Round lengths to the nearest tenth and angle measures to the nearest degree.

16. \(\triangle XYZ \)

17. \(\triangle BCD \)

18. \(\triangle DEF \)

19. \(m\angle I \) ________

20. \(m\angle M \) ________

21. \(m\angle S \) ________
LESSON 8-6 Vectors

Write each vector in component form.

1. \(\overrightarrow{PQ} \)
2. \(\overrightarrow{EF} \) with \(E(-1, 2) \) and \(F(-10, -3) \)
3. the vector with initial point \(V(7, 3) \) and terminal point \(W(0, -1) \)

Draw each vector on a coordinate plane. Find its magnitude to the nearest tenth.

4. \(\langle 5, 2 \rangle \)
5. \(\langle -4, -7 \rangle \)
6. \(\langle 3, -6 \rangle \)

Draw each vector on a coordinate plane. Find the direction of the vector to the nearest degree.

7. \(\langle 4, 6 \rangle \)
8. \(\langle 3, 2 \rangle \)
9. \(\langle 7, 2 \rangle \)

Identify each of the following in the figure.

10. equal vectors
11. parallel vectors

In Exercise 12, round directions to the nearest degree and speeds to the nearest tenth.

12. Becky is researching her family history. She has found an old map that shows the site of her great grandparents’ farmhouse outside of town. To get to the site, Becky walks for 3.1 km at a bearing of N 75° E. Then she walks 2.2 km due north. Find the distance and direction Becky could have walked to get straight to the site.
Find each measurement.

1. the perimeter of the rectangle in which $A = 2xy \text{ mi}^2$

2. the area of the square

3. the height of a parallelogram in which $A = 96 \text{ cm}^2$ and $b = 8x \text{ cm}$

4. b_1 of the trapezoid in which $A = 4x^2 \text{ in}^2$

5. the area of the triangle

6. the area of a trapezoid in which $b_1 = 3a \text{ km}$, $b_2 = 6a \text{ km}$, and $h = (10 + 4c) \text{ km}$

7. the perimeter of the kite in which $A = 49.92 \text{ yd}^2$

8. the area of the rhombus

9. d_2 of the kite in which $d_1 = (a - 4) \text{ ft}$ and $A = (2a^2 - 8a) \text{ ft}^2$
Practice B

\textbf{LESSON 9-2} \hspace{1cm} \textbf{Developing Formulas for Circles and Regular Polygons}

Find each measurement. Give your answers in terms of π.

1. \hspace{1cm} \text{the area of } \odot V

\[
25 \text{ m}
\]

2. \hspace{1cm} \text{the area of } \odot H

\[
4\text{ in.}
\]

3. \hspace{1cm} \text{the circumference of } \odot M

\[
(x + y) \text{ yd}
\]

4. \hspace{1cm} \text{the circumference of } \odot R

\[
1200 \text{ mi}
\]

5. \hspace{1cm} \text{the radius of } \odot D \text{ in which } C = 2\pi^2 \text{ cm}

6. \hspace{1cm} \text{the diameter of } \odot K \text{ in which } A = (x^2 + 2x + 1)\pi \text{ km}^2

Stella wants to cover a tabletop with nickels, dimes, or quarters. She decides to find which coin would cost the least to use.

7. Stella measures the diameters of a nickel, a dime, and a quarter. They are 21.2 mm, 17.8 mm, and 24.5 mm. Find the areas of the nickel, the dime, and the quarter. Round to the nearest tenth.

\[
353.0 \text{ mm}^2; 248.8 \text{ mm}^2; 471.4 \text{ mm}^2
\]

8. Divide each coin’s value in cents by the coin’s area. Round to the nearest hundredth.

\[
0.01 \text{ cent/mm}^2; 0.04 \text{ cent/mm}^2; 0.05 \text{ cent/mm}^2
\]

9. Tell which coin has the least value per unit of area.

10. Tell about how many nickels would cover a square tabletop that measures 1 square meter. Then find the cost of the coins.

\[
2833 \text{ nickels; } $141.65
\]

Find the area of each regular polygon. Round to the nearest tenth.

11. \hspace{1cm} 18 \text{ in.}

12. \hspace{1cm} 6 \text{ m}
Practice B

9-3 Composite Figures

Find the shaded area. Round to the nearest tenth if necessary.

1. \[\text{30 ft} \quad \text{16 ft} \quad \text{34 ft} \quad \text{40 ft} \quad \text{30 ft} \]

2. \[\text{3 in.} \quad \text{2 in.} \]

3. \[\text{36 mm} \quad \text{18 mm} \quad \text{54 mm} \]

4. \[\text{12 mi} \]

5. \[\text{3 m} \quad \text{21 m} \]

6. \[\text{3 yd} \quad \text{4 yd} \]

7. \[\text{36 cm} \quad \text{36 cm} \quad \text{6 cm} \]

8. \[\text{20 m} \quad \text{20 m} \]

9. Osman broke the unusually shaped picture window in his parents’ living room. The figure shows the dimensions of the window. Replacement glass costs $8 per square foot, and there will be a $35 installation fee. Find the cost to replace the window to the nearest cent.

\[\text{$241.54} \]

Estimate the area of each shaded irregular shape. The grid has squares with side lengths of 1 cm.

10. \[\text{Grid Image} \]

11. \[\text{Grid Image} \]
Lena and her older sister Margie love to play tetherball. They want to find how large the tetherball court is. They measure the court and find it has a 6-foot diameter.

1. Lena sketches the court in a coordinate plane in which each square represents 1 square foot. Estimate the size of the court from the figure.

2. Margie has taken a geometry course, so she knows the formula for the area of a circle. Find the actual area of the court to the nearest tenth of a square foot.

3. Estimate the area of the irregular shape.

Draw and classify each polygon with the given vertices. Find the perimeter and area of the polygon. Round to the nearest tenth if necessary.

4. \(A(-2, 3), B(3, 1), C(-2, -1), D(-3, 1) \)

5. \(P(-3, -4), Q(3, -3), R(3, -2), S(-3, 2) \)

6. \(E(-4, 1), F(-2, 3), G(-2, -4) \)

7. \(T(1, -2), U(4, 1), V(2, 3), W(-1, 0) \)
LESSON 9-5 Practice B
Effects of Changing Dimensions Proportionally

Describe the effect of each change on the area of the given figure.

1. The base of the parallelogram is multiplied by \(\frac{3}{4} \).

2. The length of a rectangle with length 12 yd and width 11 yd is divided by 6.

3. The base of a triangle with vertices \(A(2, 3) \), \(B(5, 2) \), and \(C(5, 4) \) is doubled.

4. The height of a trapezoid with base lengths 4 mm and 7 mm and height 9 mm is multiplied by \(\frac{1}{3} \).

In Exercises 5–8, describe the effect of each change on the perimeter or circumference and the area of the given figure.

5. The length and width of the rectangle are multiplied by \(\frac{4}{3} \).

6. The base and height of a triangle with base 1.5 m and height 6 m are both tripled.

7. The radius of a circle with center (2, 2) that passes through (0, 2) is divided by 2.

8. The bases and the height of a trapezoid with base lengths 4 in. and 8 in. and height 8 in. are all multiplied by \(\frac{1}{8} \).

9. A rhombus has an area of 9 cm\(^2\). The area is multiplied by 5. Describe the effects on the diagonals of the rhombus.

10. A circle has a circumference of 14\(\pi \) ft. The area is halved. Describe the effects on the circumference of the circle.
LESSON 9-6
Practice B
Geometric Probability

A point is randomly chosen on \(AD \). Find the fractional probability of each event.

1. The point is on \(\overline{AB} \). \(\frac{5}{12} \)
2. The point is on \(\overline{BD} \).
3. The point is on \(\overline{AD} \). \(\frac{1}{4} \)
4. The point is not on \(\overline{BC} \). \(\frac{2}{3} \)

Use the spinner to find the fractional probability of each event.

5. The pointer landing in region \(C \). \(\frac{1}{3} \)
6. The pointer landing in region \(A \). \(\frac{1}{9} \)
7. The pointer not landing in region \(D \).
8. The pointer landing in regions \(A \) or \(B \).

Find the probability that a point chosen randomly inside the rectangle is in each given shape. Round answers to the nearest hundredth.

9. The circle \(\approx 0.21 \)
10. The trapezoid \(\approx 0.20 \)
11. The circle or the trapezoid \(\approx 0.41 \)
12. Not the circle and the trapezoid \(\approx 0.59 \)

Barb is practicing her chip shots on the chipping green at the local golf club. Suppose Barb’s ball drops randomly on the chipping green. The figure shows the chipping green in a grid whose squares have 1-yard sides. There are 18 different 4.5-inch diameter holes on the chipping green.

13. Estimate the probability that Barb will chip her ball into any hole. Round to the nearest thousandth.

14. Estimate the probability that Barb will chip her ball into the one hole she is aiming for. Round to the nearest thousandth.

15. Estimate how many chip shots Barb will have to take to ensure that one goes into a randomly selected hole.

16. Barb is getting frustrated, so her shots are even worse. Now the ball drops randomly anywhere in the grid shown in the figure. Estimate the probability that Barb will miss the chipping green. Round to the nearest thousandth.
LESSON 10-1

Solid Geometry

Classify each figure. Name the vertices, edges, and bases.

1. hexagonal pyramid
 - vertices: A, B, C, D, E, F, and G
 - edges: FA, AG, BG, CG, DG, EG, FG
 - base: hexagon ABCDEF

2. cone
 - vertices: Y
 - edges: none
 - base: base face with center Z

Name the type of solid each object is and sketch an example.
3. a shoe box: rectangular prism
4. a can of tuna: cylinder

Describe the three-dimensional figure that can be made from the given net.
5. cylinder
6. hexagonal prism

7. Two of the nets below make the same solid. Tell which one does not. ____________

Describe each cross section.
8. circle
9. rectangle

10. After completing Exercises 8 and 9, Lloyd makes a conjecture about the shape of any cross section parallel to the base of a solid. Write your own conjecture.

LESSON 10-2
Representations of Three-Dimensional Figures

Draw all six orthographic views of each object. Assume there are no hidden cubes. In your answers, use a dashed line to show that the edges touch and a solid line to show that the edges do not touch.

1.

2.

3. Draw an isometric view of the object in Exercise 1.

5. Draw a block letter T in one-point perspective.

6. Draw a block letter T in two-point perspective. (*Hint: Draw the vertical line segment that will be closest to the viewer first.*

Determine whether each drawing represents the object at right. Assume there are no hidden cubes.

7. Top: ; Bottom: ; Left: ; Right: ; Front: ; Back: ;

8. ; ; ;
Practice B

10-3 Formulas in Three Dimensions

Find the number of vertices, edges, and faces of each polyhedron. Use your results to verify Euler’s Formula.

1.
 - V = 6
 - E = 12
 - F = 8

2.
 - V = 7
 - E = 12
 - F = 7

Find the unknown dimension in each polyhedron. Round to the nearest tenth.

3. the edge length of a cube with a diagonal of 9 ft
 - 5.2 ft

4. the length of a diagonal of a 15-mm-by-20-mm-by-8-mm rectangular prism
 - 26.2 mm

5. the length of a rectangular prism with width 2 in., height 18 in., and a 21-in. diagonal
 - 10.6 in.

Graph each figure.

6. a square prism with base edge length 4 units, height 2 units, and one vertex at (0, 0, 0)

7. a cone with base diameter 6 units, height 3 units, and base centered at (0, 0, 0)

Find the distance between the given points. Find the midpoint of the segment with the given endpoints. Round to the nearest tenth if necessary.

8. (1, 10, 3) and (5, 5, 5)
 - 6.7 units; (3, 7.5, 4)

9. (−8, 0, 11) and (2, −6, −17)
 - ___________________________
Practice B

Surface Area of Prisms and Cylinders

Find the lateral area and surface area of each right prism. Round to the nearest tenth if necessary.

1. the rectangular prism

 2. the regular pentagonal prism

Find the lateral area and surface area of each right cylinder. Give your answers in terms of π.

4.

5. a cylinder with base area 169π ft2 and a height twice the radius

6. a cylinder with base circumference 8π m and a height one-fourth the radius

Find the surface area of each composite figure. Round to the nearest tenth.

7.

8.

Describe the effect of each change on the surface area of the given figure.

9. The dimensions are multiplied by 12.

10. The dimensions are divided by 4.

Toby has eight cubes with edge length 1 inch. He can stack the cubes into three different rectangular prisms: 2-by-2-by-2, 8-by-1-by-1, and 2-by-4-by-1. Each prism has a volume of 8 cubic inches.

11. Tell which prism has the smallest surface-area-to-volume ratio.

12. Tell which prism has the greatest surface-area-to-volume ratio.
Find the lateral area and surface area of each regular right solid. Round to the nearest tenth if necessary.

1. \(\text{L} = 20 \text{ yd}, \text{H} = 96 \text{ yd} \)
 \(\text{S} = 9600 \text{ yd}^2 \)

2. \(\text{L} = 18 \text{ m}, \text{H} = 9 \text{ m} \)
 \(\text{S} = 540 \pi \text{ m}^2 \)

3. a regular hexagonal pyramid with base edge length 12 mi and slant height 15 mi
 \(\text{L} = 540 \text{ mi}^2 \)
 \(\text{S} = 914.1 \pi \text{ mi}^2 \)

Find the lateral area and surface area of each right cone. Give your answers in terms of \(\pi \).

4. \(\text{L} = 260 \pi \text{ km}^2 \)
 \(\text{S} = 360 \pi \text{ km}^2 \)

5. a right cone with base circumference 14 \(\pi \) ft and slant height 3 times the radius
 \(\text{L} = 147 \pi \text{ ft}^2 \)
 \(\text{S} = 196 \pi \text{ ft}^2 \)

6. a right cone with diameter 240 cm and altitude 35 cm
 \(\text{L} = 15000 \pi \text{ cm}^2 \)
 \(\text{S} = 29400 \pi \text{ cm}^2 \)

Describe the effect of each change on the surface area of the given figure.

7. The dimensions are multiplied by \(\frac{1}{5} \).

8. The dimensions are multiplied by \(\frac{3}{2} \).

Find the surface area of each composite figure. Round to the nearest tenth if necessary.

9. \(\text{S} = 80 \pi \text{ m}^2 \)

10. \(\text{S} = 76.6 \pi \text{ m}^2 \)

11. The water cooler at Mohammed’s office has small conical paper cups for drinking. He uncurls one of the cups and measures the paper. Based on the diagram of the uncurled cup, find the diameter of the cone.
LESSON 10-6
Volume of Prisms and Cylinders

Find the volume of each prism. Round to the nearest tenth if necessary.

1. the oblique rectangular prism

2. the regular octagonal prism

3. a cube with edge length 0.75 m

Find the volume of each cylinder. Give your answers both in terms of π and rounded to the nearest tenth.

4. a cylinder with base circumference 18π ft and height 10 ft

5. a cylinder with height 6 km and radius 3 km

6. a cylinder with base circumference 18π ft and height 10 ft

7. CDs have the dimensions shown in the figure. Each CD is 1 mm thick. Find the volume in cubic centimeters of a stack of 25 CDs. Round to the nearest tenth.

Describe the effect of each change on the volume of the given figure.

8. The dimensions are halved.

9. The dimensions are divided by 5.

Find the volume of each composite figure. Round to the nearest tenth.

10.

11.

Find the volume of each pyramid. Round to the nearest tenth if necessary.

1. \(\frac{1}{3} \times 14 \text{ mm} \times 35 \text{ mm} \times \frac{1}{3} \times 15 \text{ mm} = 3934.2 \text{ mm}^3 \)

2. \(\frac{1}{3} \times 7 \text{ yd} \times 6 \text{ yd} \times 4 \text{ yd} = 56 \text{ yd}^3 \)

3. Giza in Egypt is the site of the three great Egyptian pyramids. Each pyramid has a square base. The largest pyramid was built for Khufu. When first built, it had base edges of 754 feet and a height of 481 feet. Over the centuries, some of the stone eroded away and some was taken for newer buildings. Khufu's pyramid today has base edges of 745 feet and a height of 471 feet. To the nearest cubic foot, find the difference between the original and current volumes of the pyramid.

\[\text{Original Volume} = \frac{1}{3} \times 754 \text{ ft} \times 754 \text{ ft} \times 481 \text{ ft} \]
\[\text{Current Volume} = \frac{1}{3} \times 745 \text{ ft} \times 745 \text{ ft} \times 471 \text{ ft} \]
\[\text{Difference} = \text{Original Volume} - \text{Current Volume} \]

Find the volume of each cone. Give your answers both in terms of \(\pi \) and rounded to the nearest tenth.

4. \(\frac{1}{3} \times 15 \text{ cm} \times 4 \text{ cm} = \frac{1}{3} \times 60 \text{ cm}^3 = 20 \text{ cm}^3 \)

5. \(\frac{1}{3} \times 28 \text{ mi} \times 100 \text{ mi} = \frac{1}{3} \times 2800 \text{ mi}^2 = 933.3 \text{ mi}^3 \)

6. a cone with base circumference \(6\pi \text{ m} \) and a height equal to half the radius

7. The volume of a cone is one-third the volume of the cylinder.

Describe the effect of each change on the volume of the given figure.

8. The dimensions are multiplied by \(\frac{2}{3} \).

9. The dimensions are tripled.

Find the volume of each composite figure. Round to the nearest tenth.

10. \(\frac{1}{3} \times 4 \text{ ft} \times 4 \text{ ft} \times 3 \text{ ft} = 16 \text{ ft}^3 \)

11. \(\frac{1}{3} \times 8 \text{ mm} \times 5 \text{ mm} \times 8 \text{ mm} = \frac{1}{3} \times 320 \text{ mm}^3 = 106.7 \text{ mm}^3 \)
LESSON 10-8

Practice B

Spheres

Find each measurement. Give your answers in terms of \(\pi \).

1. \(\text{the volume of the hemisphere} \)

2. \(\text{the volume of the sphere} \)

3. the diameter of a sphere with volume \(\frac{500\pi}{3} \text{ m}^3 \)

4. The figure shows a grapefruit half. The radius to the outside of the rind is 5 cm. The radius to the inside of the rind is 4 cm. The edible part of the grapefruit is divided into 12 equal sections. Find the volume of the half grapefruit and the volume of one edible section. Give your answers in terms of \(\pi \).

Find each measurement. Give your answers in terms of \(\pi \).

5. \(\text{the surface area of the sphere} \)

6. \(\text{the surface area of the closed hemisphere and its circular base} \)

7. the volume of a sphere with surface area \(196\pi \text{ km}^2 \)

Describe the effect of each change on the given measurement of the figure.

8. 15 mi

 surface area
 The dimensions are divided by 4.

9. \(\cdot 36 \text{ in} \)

 volume
 The dimensions are multiplied by \(\frac{2}{5} \).

Find the surface area and volume of each composite figure. Round to the nearest tenth.

10.

11.
Identify each line or segment that intersects each circle.

1.

2.

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

3.

4.

5. The Moon’s orbit is not exactly circular, but the average distance from its surface to Earth’s surface is 384,000 kilometers. The diameter of the Moon is 3476 kilometers. Find the distance from the surface of Earth to the visible edge of the Moon if the Moon is directly above the observer. Round to the nearest kilometer. (Note: The figure is not drawn to scale.)

In Exercises 6 and 7, \overline{EF} and \overline{EG} are tangent to $\odot H$. Find EF.

6.

7.

Practice B

11-2 Arcs and Chords

The circle graph shows data collected by the U.S. Census Bureau in 2004 on the highest completed educational level for people 25 and older. Use the graph to find each of the following. Round to the nearest tenth if necessary.

1. $\angle CAB$
2. $\angle DAG$
3. $\angle EAC$
4. \overline{BG}
5. \overline{GF}
6. \overline{BDE}

Find each measure.

7. \[\overline{QS} \]
8. \[\overline{HG} \]

9. \[\overline{UTW} \]

Find each length. Round to the nearest tenth.

10. \[\overline{ZY} \]
11. \[\overline{EG} \]

Find each length. Round to the nearest tenth.

12. \[\overline{EG} \]
LESSON Practice B
11-3 Sector Area and Arc Length

Find the area of each sector. Give your answer in terms of \(\pi \) and rounded to the nearest hundredth.

1. sector \(BAC \) __________________________

2. sector \(UTV \) __________________________

3. sector \(KJL \) __________________________

4. sector \(FEG \) __________________________

5. The speedometer needle in Ignacio’s car is 2 inches long. The needle sweeps out a 130° sector during acceleration from 0 to 60 mi/h. Find the area of this sector. Round to the nearest hundredth. __________

Find the area of each segment to the nearest hundredth.

6. __________________________

7. __________________________

8. __________________________

9. __________________________

Find each arc length. Give your answer in terms of \(\pi \) and rounded to the nearest hundredth.

10. __________________________

11. __________________________

12. an arc with measure 45° in a circle with radius 2 mi _________________

13. an arc with measure 120° in a circle with radius 15 mm _________________
LESSON 11-4

Practice B

Inscribed Angles

Find each measure.

1. \(\angle CED = \) \(\angle DEA = \)
 ![Diagram 1]

2. \(\angle FGI = \) \(\angle GH = \)
 ![Diagram 2]

3. \(\angle QRS = \) \(\angle TSR = \)
 ![Diagram 3]

4. \(\angle XVU = \) \(\angle VXW = \)
 ![Diagram 4]

5. A circular radar screen in an air traffic control tower shows these flight paths. Find \(\angle LNK \).
 ![Diagram 5]

Find each value.

6. \(\angle CED = \)
 \((10x - 2)^\circ \)
 ![Diagram 6]

7. \(y = \)
 \((4y - 7)^\circ \)
 ![Diagram 7]

8. \(a = \)
 ![Diagram 8]

9. \(\angle SRT = \)
 \(\left(\frac{1}{2}b + 27\right)^\circ \)
 ![Diagram 9]

Find the angle measures of each inscribed quadrilateral.

10. \(\angle X = \)
 \((8x + 21)^\circ \)
 \((10x - 1)^\circ \)
 \((7x - 6)^\circ \)
 ![Diagram 10]

11. \(\angle C = \)
 \(\angle D = \)
 \(\angle E = \)
 \(\angle F = \)
 ![Diagram 11]

12. \(\angle T = \)
 \(\angle U = \)
 \(\angle V = \)
 \(\angle W = \)
 ![Diagram 12]

13. \(\angle K = \)
 \(\angle L = \)
 \(\angle M = \)
 \(\angle N = \)
 ![Diagram 13]
LEsson 11-5 Practice B
Angle Relationships in Circles

Find each measure.

1. \(\angle ABE = \) ________, \(\angle B = \) ________

2. \(\angle LKI = \) ________, \(\angle I = \) ________

3. \(\angle RPS = \) ________

4. \(\angle YUX = \) ________

Find the value of \(x \).

5. ________

6. ________

7. ________

8. ________

9. The figure shows a spinning wheel. The large wheel is turned by hand or with a foot trundle. A belt attaches to a small bobbin that turns very quickly. The bobbin twists raw materials into thread, twine, or yarn. Each pair of spokes intercepts a 30° arc. Find the value of \(x \).

10. \(\angle DEI = \) ________, \(\angle EF = \) ________

11. \(\angle WVR = \) ________, \(\angle TUW = \) ________

Copyright © by Holt, Rinehart and Winston. All rights reserved.
LESSON 11-6

Segment Relationships in Circles

Find the value of the variable and the length of each chord.

1. \(\triangle ABC \)
 - \(A \)
 - \(B \)
 - \(C \)
 - \(D \)

2. \(\triangle DEF \)
 - \(D \)
 - \(E \)
 - \(F \)

3. \(\triangle PQR \)
 - \(P \)
 - \(Q \)
 - \(R \)

4. \(\triangle VSW \)
 - \(V \)
 - \(W \)
 - \(X \)

Find the value of the variable and the length of each secant segment.

5. \(\triangle BCD \)
 - \(B \)
 - \(C \)
 - \(D \)

6. \(\triangle GJK \)
 - \(G \)
 - \(J \)
 - \(K \)

7. \(\triangle TQR \)
 - \(T \)
 - \(Q \)
 - \(R \)

8. \(\triangle EFG \)
 - \(E \)
 - \(F \)
 - \(G \)

Find the value of the variable. Give answers in simplest radical form if necessary.

9. \(\triangle KJL \)
 - \(K \)
 - \(J \)
 - \(L \)

10. \(\triangle KMN \)
 - \(K \)
 - \(M \)
 - \(N \)

11. \(\triangle OZ \)
 - \(O \)
 - \(Z \)

12. \(\triangle D \)
 - \(D \)
Write the equation of each circle.

1. \(\odot X \) centered at the origin with radius 10

2. \(\odot R \) with center \(R(-1, 8) \) and radius 5

3. \(\odot P \) with center \(P(-5, -5) \) and radius \(2\sqrt{5} \)

4. \(\odot O \) centered at the origin that passes through \((9, -2) \)

5. \(\odot B \) with center \(B(0, -2) \) that passes through \((-6, 0) \)

6. \(\odot F \) with center \(F(11, 4) \) that passes through \((-2, 5) \).

Graph each equation.

7. \(x^2 + y^2 = 25 \)

8. \((x + 2)^2 + (y - 1)^2 = 4 \)

9. \(x^2 + (y + 3)^2 = 1 \)

10. \((x - 1)^2 + (y - 1)^2 = 16 \)

Crater Lake in Oregon is a roughly circular lake. The lake basin formed about 7000 years ago when the top of a volcano exploded in an immense explosion. Hillman Peak, Garfield Peak, and Cloudcap are three mountain peaks on the rim of the lake. The peaks are located in a coordinate plane at \(H(-4, 1) \), \(G(-2, -3) \), and \(C(5, -2) \).

11. Find the coordinates of the center of the lake.

12. Each unit of the coordinate plane represents \(\frac{3}{5} \) mile. Find the diameter of the lake.
Practice B

Reflections

Tell whether each transformation appears to be a reflection.

1. [Diagram]
 - Yes

2. [Diagram]
 - No

3. [Diagram]
 - Yes

4. [Diagram]
 - No

Draw the reflection of each figure across the line.

5. [Diagram]

6. [Diagram]

7. Sam is about to dive into a still pool, but some sunlight is reflected off the surface of the water into his eyes. On the figure, plot the exact point on the water’s surface where the sunlight is reflected at Sam.

Reflect the figure with the given vertices across the given line.

8. $A(4, 4), B(3, -1), C(1, -2); y$-axis

9. $D(-4, -1), E(-2, 3), F(-1, 1); y = x$

10. $P(1, 3), Q(-2, 3), R(-2, 1), S(1, 0); x$-axis

11. $J(3, -4), K(1, -1), L(-1, -1), M(-2, -4); y = x$
Tell whether each transformation appears to be a translation.

1. __________
2. __________
3. __________
4. __________

Draw the translation of each figure along the given vector.

5. __________
6. __________

Translate the figure with the given vertices along the given vector.

7. \(A(-1, 3), B(1, 1), C(4, 4); (0, -5)\)
8. \(P(-1, 2), Q(0, 3), R(1, 2), S(0, 1); (1, 0)\)

9. \(L(3, 2), M(1, -3), N(-2, -2); (-2, 3)\)
10. \(D(2, -2), E(2, -4), F(1, -4), G(-2, -2); (2, 5)\)

11. A builder is trying to level out some ground with a front-end loader. He picks up some excess dirt at \((9, 16)\) and then maneuvers through the job site along the vectors \((-6, 0), (2, 5),\) and \((8, 10)\) to get to the spot to unload the dirt. Find the coordinates of the unloading point. Find a single vector from the loading point to the unloading point.
Tell whether each transformation appears to be a rotation.

1. Yes
2. No
3. No
4. No

Draw the rotation of each figure about point P by $m \angle A$.

5.

6.

Rotate the figure with the given vertices about the origin using the given angle of rotation.

7. $A(-2, 3), B(3, 4), C(0, 1); 90^\circ$
8. $D(-3, 2), E(-4, 1), F(-2, -2), G(-1, -1); 90^\circ$

9. $J(2, 3), K(3, 3), L(1, -2); 180^\circ$
10. $P(0, 4), Q(0, 1), R(-2, 2), S(-2, 3); 180^\circ$

11. The steering wheel on Becky’s car has a 15-inch diameter, and its center is at $(0, 0)$. Point X at the top of the wheel has coordinates $(0, 7.5)$. To turn left off her street, Becky must rotate the steering wheel by 300°. Find the coordinates of X when the steering wheel is rotated. Round to the nearest tenth. (Hint: How many degrees short of a full rotation is 300°?)
LESSON 12-4

Compositions of Transformations

Draw the result of each composition of isometries.

1. Rotate \(\triangle XYZ \) 90° about point \(P \) and then translate it along \(\overrightarrow{V} \).

2. Reflect \(\triangle LMN \) across line \(q \) and then translate it along \(\overrightarrow{u} \).

3. \(ABCD \) has vertices \(A(-3, 1), B(-1, 1), C(-1, -1), \) and \(D(-3, -1) \). Rotate \(ABCD \) 180° about the origin and then translate it along the vector \((1, -3) \).

4. \(\triangle PQR \) has vertices \(P(1, -1), Q(4, -1), \) and \(R(3, 1) \). Reflect \(\triangle PQR \) across the \(x \)-axis and then reflect it across \(y = x \).

5. Ray draws equilateral \(\triangle EFG \). He draws two lines that make a 60° angle through the triangle's center. Ray wants to reflect \(\triangle EFG \) across \(\ell_1 \) and then across \(\ell_2 \). Describe what will be the same and what will be different about the image of \(\triangle E"F"G" \) compared to \(\triangle EFG \).

Draw two lines of reflection that produce an equivalent transformation for each figure.

6. translation: \(STUV \rightarrow S'T'U'V' \)

7. rotation with center \(P \): \(STUV \rightarrow S'T'U'V' \)
Tell whether each figure has line symmetry. If so, draw all lines of symmetry.

1.

2.

3.

4. Anna, Bob, and Otto write their names in capital letters. Draw all lines of symmetry for each whole name if possible.

 ANNA **BOB** **OTTO**

Tell whether each figure has rotational symmetry. If so, give the angle of rotational symmetry and the order of the symmetry.

5.

6.

7.

8. This figure shows the Roman symbol for Earth. Draw all lines of symmetry. Give the angle and order of any rotational symmetry.

Tell whether each figure has plane symmetry, symmetry about an axis, both, or neither.

9.

10.

11.

Copyright © by Holt, Rinehart and Winston. All rights reserved.
Tell whether each pattern has translation symmetry, glide reflection symmetry, or both.

1. translation symmetry
2. both
3. glide reflection symmetry

Use the given figure to create a tessellation.
4.
5.

Classify each tessellation as regular, semiregular, or neither.
6. regular
7. semiregular
8. neither

Determine whether the given regular polygon(s) can be used to form a tessellation. If so, draw the tessellation.
9.
10. no
11. yes
Tell whether each transformation appears to be a dilation.

1. no

2. yes

3. no

4. yes

Draw the dilation of each figure under the given scale factor with center of dilation \(P \).

5. scale factor: \(\frac{1}{2} \)

6. scale factor: \(-2\)

7. A sign painter creates a rectangular sign for Mom’s Diner on his computer desktop. The desktop version is 12 inches by 4 inches. The actual sign will be 15 feet by 5 feet. If the capital \(M \) in “Mom’s” will be 4 feet tall, find the height of the \(M \) on his desktop version.

Draw the image of the figure with the given vertices under a dilation with the given scale factor centered at the origin.

8. \(A(2, -2), B(2, 3), C(-3, 3), D(-3, -2); \) scale factor: \(\frac{1}{2} \)

9. \(P(-4, 4), Q(-3, 1), R(2, 3); \) scale factor: \(-1\)

10. \(J(0, 2), K(-2, 1), L(0, -2), M(2, -1); \) scale factor: 2

11. \(D(0, 0), E(-1, 0), F(-1, -1); \) scale factor: \(-2\)